Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Understanding molecular mechanisms of age-related neurodegenerative diseases to generate novel molecular therapies

Human dopaminergic neurons grown from stem cells derived from a patient with Parkinson's disease
Human dopaminergic neurons grown from stem cells derived from a patient with Parkinson's disease

Neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease, are set to become a "silent epidemic" placing a major healthcare burden on countries with aging populations. Our Laboratory of Molecular Neurodegeneration is focused on better understanding the molecular and genetic mechanisms of diseases using stem cell-derived neuronal cultures and novel transgenic rodent models. We have state-of-the-art laboratory facilities and are based in the Kavli Institute for Nanoscience Discovery (Kavli INsD), the University of Oxford’s first interdisciplinary science institute spanning the life, medical and physical sciences in the South Parks Road science area. Our work is highly collaborative and multidisciplinary working with colleagues on the South Parks Road site and clinicians at the Oxford University Hospitals (OUH) NHS Trust.  Our work sets out to better understand the molecular mechanisms of age-related neurodegenerative diseases with a view towards generating novel molecular therapies. We work with stem-cell derived neuronal models from patients; we are characterising novel rodent transgenic models carrying mutant or wild-type variants of disease genes; and we develop potential small molecule and genetic therapies for disease treatment.

OPDCParkinson's disease 

Professor Richard Wade-Martins heads the Oxford Parkinson's Disease Centre (OPDC), a major multi-disciplinary translational study funded by the Monument Trust Discovery Award from Parkinson's UK founded in 2010. The aim of the OPDC is to understand the very earliest pathways to pathology, focusing on alterations in neuronal function before cell death with a view to develop neuroprotective therapies. Our own laboratory leads on the differentiation of patient-derived induced pluripotent stem cell (iPSC) lines into dopaminergic neurons and on detailed phenotyping studies to compare neurons from Parkinson's patients with those from controls. We are also generating and characterising novel transgenic rodent models carrying wild-type or mutant forms of the genes alpha-synuclein (SNCA), leucine rich repeat kinase 2 (LRRK2) and glucocerebrosidease (GBA). Lorraine Dyson is the Wade-Martins Group and OPDC Administrator.

      ARUK-RNC-MBP-Thames-Valley.png  Alzheimer's disease

The existence of the two key molecular pathological features of Alzheimer's disease, extracellular amyloid plaques and intracellular tau tangles is well-known, but whether and how these pathologies interact is less well-understood. Our work uses iPSC lines and transgenic mouse lines engineered to express mutant disease-associated variants of the human microtubule associated protein tau (MAPT) gene. Our previous work has used the MAPT gene locus to address a central question in molecular genetics: how does non-coding genetic variation affect gene expression and splicing, leading to susceptibility to disease.

Our laboratory heads the Alzheimer's Research UK Thames Valley Network in which we are the lead molecular biology laboratory. Richard Wade-Martins is on the Network Committee, Becky Carlyle is the Network Coordinator and Katie Thomas is the Network Administrator.

Motor neuron disease

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are devastating related diseases without any effective treatment. The recent discovery that an expanded GGGGCC hexanucleotide repeat in the first intron of the gene C9ORF72 causes a large proportion of both diseases has had a major impact on our thinking about diseases causes and potential therapies. Our work uses novel cellular and transgenic mouse models to address potential mechanisms by which the intronic expansions in C9ORF72 cause disease, either through a gain or loss of function, and to develop novel therapeutic targets. Other genetic causes of ALS and FTD which we study are mutations in the genes TDP-43 and FUS. Although mutations in these two genes are very rare, they form the basis for disease models and provide much information on the molecular causes of cellular dysfunction, which we have recently reviewed (Thomas et al, 2013).

Friedreich's ataxia

Friedreich’s ataxia (FRDA) is the most common inherited recessive ataxia and is caused by large GAA expansions in intron 1 of the frataxin gene (FXN). GAA expansions result in reduced FXN expression, although the mechanism of repression is not fully understood. Our work seeks to better understand the mechanisms by which the GAA intronic mutations leads to gene repression and to develop small molecule therapies to alleviate the effects of the repeat expansion. We have recently developed the first GAA-expanded FXN genomic DNA reporter model of FRDA and screened a library of novel small molecules to identify compounds which elevate mutant FRDA expression (Lufino et al, 2013).

Patient stem-cell models

We are part of the StemBANCC consortium, a major European Union Innovative Medicines Initiative (EU IMI) program started in 2012 to characterise 1500 induced pluripotent stem cell (iPSC) lines derived from patients with important diseases of our time, including Parkinson's and Alzheimer's.

Our team

Parkinson’s UK lab visit

Key publications

Related research themes

We host a number of internationally recognised neuroscience groups, with expertise in a wide range of experimental and computational methods.
Neuroscience

We host a number of internationally recognised ...

We play a leading role in the development of more efficient and cost-effective sequencing technologies.
Functional Genomics

We play a leading role in the development of more ...