Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.
Skip to main content

Sleep, brain and behaviour laboratory

Lfps and mua during sleep 1
Cortical local field potentials and multiunit activity during sleep

Sleep is traditionally defined and characterised by behavioural and electrophysiological criteria. For example, during sleep we are immobile and less responsive to the environment, and global cortical activity is distinctly different from an awake state. The differences between waking and sleep become less apparent as we look closer at the spatio-temporal patterns of cortical activity by recording local field potentials or neuronal spiking. It has been shown, that sleep-like patterns of neuronal activity are not uncommon during waking, even during active behaviours, and especially when the animals are drowsy or sleep-deprived. On the other hand, the main network oscillations during sleep – slow waves (~0.5-4 Hz) and spindles (~9-16 Hz) – are remarkably dynamic and idiosyncratic events, mostly occurring locally, and never encompassing the entire cortex at once. Slow waves are considered a reliable marker of preceding sleep-wake history, and a measure of sleep ‘intensity’. The ‘homeostatic principle’ postulates that the longer we stay awake, the more intense is our subsequent sleep. Recent evidence suggests that sleep homeostasis is a local process, and it has been identified both in cortical and subcortical structures, such as the dorsal striatum. Sleep spindles, which arise within the thalamocortical circuitry, also occur locally in the neocortex; and their occurrence varies greatly depending on the cortical region, the time of day and the immediate preceding state. Finally, individual cortical neurons are highly diverse with respect to the state dependency of their spiking activity, and, importantly, their response to preceding sleep-wake history. Over the last few decades our knowledge about sleep has progressed tremendously. However, the fundamental questions remain: what is ‘noise’ and what is ‘signal’ in cortical activity during sleep, and how does the global and precisely regulated state of sleep emerge from the activity (or lack thereof) of local and distributed, cortical and subcortical circuits.

In our research we use a broad range of techniques and approaches, such as behavioural tasks, electrophysiology, transgenic mouse models, local brain microstimulation and pharmacology.

Video credit: Vicky Isley and Paul Smith (boredomresearch).

Our team

Affiliated members


Angus Fisk 

Postgraduate Student

Christian Harding

Postgraduate Student

Hannah Alfonsa

Postdoctoral Research Scientist

Selected publications

What's new

Cristina Blanco Duque is a CSF 2019 Award Winner

Congratulations are in order for Wellcome Trust doctoral student Cristina Blanco Duque, the winner of the Travel Award and the Award for Best Contribution at the International Conference of Advanced Sleep Modulation Technologies.

DPAG Researchers participate at the Parliamentary launch of The Physiological Society's new ageing report

The new Physiological Society report "Growing Older, Better" highlights physiology's role in meeting the UK Government's healthy ageing mission. Associate Professor Vladyslav Vyazovskiy and Novo Nordisk Postdoctoral Fellow Laura McKillop contributed a research spotlight at the report's launch at the Houses of Parliament.

Latest publications

Related research themes