Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

We use the full range of modern molecular genetic and imaging techniques to study a range of metabolic areas.

Cells within the skin are represented as an oblong-shaped solid mass of multi coloured, almost mosaic-like structure © Frances Ashcroft and Melissa Brereton
Hormone-producing cells in the pancreatic islets of Langerhans

Understanding the role of hormones and energy production

Metabolism and endocrinology underlie every aspect of our lives, from the functioning of a single cell through to our ability to run a marathon. Therefore it is not surprising that defects in endocrine or metabolic function underlie so many common human diseases, including cancer, cardiovascular disease, diabetes and neurodegenerative disorders. 

Our department has a long and distinguished history of metabolic and endocrine research. This includes the pioneering studies of Haldane and Douglas into human respiration and metabolism. It also includes the work of Geoffrey Harris, who showed that the anterior pituitary is regulated by factors secreted from hypothalamic neurons, and who many consider to be the “founding father” of neuroendocrinology. More recently, basic science from our department has helped to change therapy for patients with neonatal diabetes and to improve the performance of endurance athletes. Today, our studies remain directed at understanding basic physiological mechanisms, how these are impaired in disease, with the ultimate goal of creating new therapeutic approaches to disease. 

Metabolic research is of profound importance to society. The current twin pandemics of obesity and type-2 diabetes are obvious examples of where there is both a major public health concern and a huge economic cost. DPAG groups are investigating the genetic causes of obesity, the regulation of pancreatic hormone secretion, and how cardiac metabolism is impaired in type-2 diabetes. We also study metabolic changes in cancer, an almost defining feature of this disease, along with cellular mechanisms involved in amino acid uptake, metabolism and cell growth.

Mammals need a continuous supply of oxygen to survive because it forms the terminal electron acceptor for aerobic energy production. Our department has a major research effort to understand both oxygen sensing and respiratory control. Importantly, we are beginning to understand just how important oxygen sensing and signaling pathways are for shaping both human form and function. Mitochondria are the subcellular structures associated with aerobic metabolism, and our department has a strong research profile directed at understanding mitochondrial function within their cellular environment.

Within our metabolic and endocrine research we employ a wide variety of techniques, ranging from the highly molecular through to physiological studies in human volunteers. Overall, the Department provides a vibrant, comprehensive and exciting place to conduct research within this theme.



Groups within this theme

ATP-sensitive potassium (K-ATP) channels, insulin secretion and diabetes
Ashcroft Group

ATP-sensitive potassium (K-ATP) channels, insulin ...

Cellular mechanisms of oxygen and acid sensing in arterial chemoreceptors
Buckler Group

Cellular mechanisms of oxygen and acid sensing in ...

Optimising cardiac stem cell therapy by finding the best conditions for the cells in the lab and in the heart
Carr Group

Optimising cardiac stem cell therapy by finding ...

Glucocorticoids, Annexin 1 and the Neuroendocrine–Immune Interface
Christian Group

Glucocorticoids, Annexin 1 and the ...

Ketone metabolism in exercise and disease
Clarke Group

Ketone metabolism in exercise and disease

Role of ABC transporters in gut endocrine K-and L-cells
de Wet Group

Role of ABC transporters in gut endocrine K-and ...

We investigate neuroimmune molecular mechanisms underlying obesity.
Domingos Group

We investigate neuroimmune molecular mechanisms ...

Abnormal metabolism in type 2 diabetes, and how this affects the heart
Heather Group

Abnormal metabolism in type 2 diabetes, and how ...

Spatial organization of fat metabolism.
Klemm Group

Spatial organization of fat metabolism.

Iron Homeostasis- Mechanisms and importance in systems (patho)physiology
Lakhal-Littleton Group

Iron Homeostasis- Mechanisms and importance in ...

Human systems physiology: Respiratory, cardiovascular and metabolic function in response to stresses such as exercise and hypoxia
Robbins Group

Human systems physiology: Respiratory, ...

Acid handling and signalling in the heart and in cancer
Swietach Group

Acid handling and signalling in the heart and in ...

Development and Application of Cardiac Magnetic Resonance Imaging and Spectroscopy
Tyler Group

Development and Application of Cardiac Magnetic ...

Exosomes, Microcarriers and Regulated Secretion: Complex Forms of Inter-Cellular and Inter-Organism Communication
Wilson Group

Exosomes, Microcarriers and Regulated Secretion: ...

Latest news

Researchers discover novel form of adaptation in the auditory system

DPAG’s auditory neuroscience researchers have found that the auditory system adapts to the changing acoustics of reverberant environments by temporally shifting the inhibitory tuning of cortical neurons to remove reverberation.

Collaborative team driven by DPAG and Chemistry awarded RSC Horizon Prize

The Molecular Flow Sensor Team, with collaborating members principally from DPAG’s Robbins and Talbot groups and the Department of Chemistry, has been named the winner of the Royal Society of Chemistry’s (RSC) Analytical Division Horizon Prize for the development of a new technology for measuring lung function.

REF 2021 results