Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

We play a leading role in the development of more efficient and cost-effective sequencing technologies.

Male Drosophila accessory gland

Understanding genetics through computation and experimentation

Our functional genomics program combines theory and practice to capitalize on the wealth of information available from genomic sequencing. We’re driven by a desire to understand human disease through analysing patients and relevant animal models – which means our work can often be translated into clinical practice.

Much of our work is based on the core principle of using model organisms to better understand human disease. A major driving force behind our research, for instance, is the MRC Functional Genomics Unit (FGU). Using genomic information from patients, it combines rigorous computational analysis and interpretation to identify the genetic origins of common neurological diseases such as Parkinson’s and multiple sclerosis.

Elsewhere, our researchers work across a wide range of diseases, but are always led by clinical relevance. Studying the single gene defects responsible for Duchenne muscular dystrophy has led to effective treatments for the disease in mice which are now being translated for use in human, for instance, while computational analysis of enormous genomic data sets is shedding light on the origins of neurodevelopmental disorders like autism and ADHD. Even some of our most basic work, such as fruit fly genetics, is resulting in the discovery of new cellular organelles and uncovering the basis of sexual development.

In the future, the availability of genomic data looks set to increase exponentially, and our Computational Genomics Analysis and Training Programme (www.cgat.org) is equipping researchers from a diverse range of backgrounds to process and interpret their results more efficiently. While there’s no denying that genomic information has begun to transform the treatment of patients, we hope to ensure it will increasingly make good on its early promise and continues to flourish.



Groups within this theme

Understanding Cerebellar Development and Disease
Becker Group

Understanding Cerebellar Development and Disease

Molecular Analysis of Neuromuscular Diseases
Davies Group

Molecular Analysis of Neuromuscular Diseases

We investigate neuroimmune molecular mechanisms underlying obesity.
Domingos Group

We investigate neuroimmune molecular mechanisms ...

Genetic Dissection of Sexual Behaviour
Goodwin Group

Genetic Dissection of Sexual Behaviour

Sleep, brain and behaviour laboratory
Vyazovskiy Group

Sleep, brain and behaviour laboratory

Understanding molecular mechanisms of age-related neurodegenerative diseases to generate novel molecular therapies
Wade-Martins Group

Understanding molecular mechanisms of age-related ...

Exosomes, Microcarriers and Regulated Secretion: Complex Forms of Inter-Cellular and Inter-Organism Communication
Wilson Group

Exosomes, Microcarriers and Regulated Secretion: ...

Latest news

Researchers reveal surprising simplicity behind our ability to hear

A computational modelling study from the King Group demonstrates that the way sounds are transformed from the ear to the brain’s auditory cortex may be simpler than expected. These findings not only highlight the value of computational modelling for determining the principles underlying neural processing, but could also be useful for improving treatments for patients with hearing loss.

New insights into mitochondria quality control could hold the key to treating metabolic disorders

The Zaccolo Group has identified a new mechanism that regulates mitochondria quality control, a process that is crucial to maintaining healthy cells and preventing disease.

‘Junk’ DNA could be rewiring our brains

A new study by Waddell Group Neuroscientists at the Centre for Neural Circuits and Behaviour shows that mobile genetic elements that were active in the genomes of our ancestors could be closely linked to important functions in our brain and might help diversify our behaviour, cognition and emotions.