Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Regulation of blood and lymphatic vessel development

None
An enhancer driving arterial-specific reporter gene expression in both zebrafish and mouse transgenic models

The goal of my laboratory is to understand how blood vessels grow, differentiate and regress through studying the transcriptional regulation of vascular genes. 

The vascular system is a highly branched network of endothelial cell-lined tubes that transports blood, metabolites and waste products throughout the body. In addition to being essential for embryonic development, the formation of new blood vessels is required after injury, during tissue regrowth and repair, and for the growth and spread of solid tumours. However, our ability to manipulate vessel growth for therapeutic aims is hampered by a poor understanding of the mechanisms regulating vessel growth in both physiological and pathological contexts.

To study vessel regulation, my laboratory primarily focuses on the identification, characterisation and delineation of enhancers (cis-regulatory elements) directing gene expression within the vasculature. Enhancers are densely clustered groups of transcription factor binding motifs and are the principal regulators of spatio-temporal patterns of gene transcription. Analysis of the proteins that activate and repress different enhancers is combined with genetic studies to accurately position these factors within complex signalling networks. We are using this approach to understand what makes blood vessels molecularly different from each other, to determine the signalling cascades involved at different stages of vessel growth, and to study these processes in different disease states, and during repair after  injury (e.g. after a heart attack). 

This work involves a variety of model systems including transgenic mouse and zebrafish, tissue culture and in silico analysis.

Our team

Selected Publications

What's new

DPAG researchers to take on the London to Brighton Bike Ride for the British Heart Foundation

Associate Professor Sarah De Val will lead a team of researchers as they take on the British Heart Foundation’s (BHF) London to Brighton Bike Ride.

London Marathon to fund De Val and Vieira Lab research as two of eight handpicked BHF projects

Two projects aimed at tackling heart failure led by Associate Professor Sarah De Val and Dr Joaquim Vieira are to be funded by the 2022 TCS London Marathon with the British Heart Foundation as its Charity of the Year. The BHF’s runners, who are raising £3 million in funding, will include De Val Lab postdoctoral researcher Dr Alice Neal.

Potential strategy identified to improve blood vessel growth after heart attack

A collaborative paper from the De Val and Smart Groups has established multiple regulatory pathways responsible for the formation of blood vessels in the developing heart. In doing so they have identified a crucial pathway that is repressed in the adult heart after injury, which may hold the key to a new and improved strategy for repair.

Related research themes

We are recognised internationally for our pioneering approaches to systems biology and to computational modelling of the heart.
Cardiac Sciences

We are recognised internationally for our ...

We dissect the molecular and cellular mechanisms underlying a range of developmental and reproductive processes.
Development & Cell Biology

We dissect the molecular and cellular mechanisms ...