Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

A new paper from the Heather and Tyler groups has uncovered the mechanism responsible for reduced energy in the hearts of patients with type 2 diabetes and revealed a new therapeutic strategy to reverse the energy deficit.

Graphical abstract showing increased energy levels in the heart when mitochondrial deacetylase SIRT3 activator "honokiol" is administered to the diabetic heart, compared to lower levels in the research control group.

Patients with type 2 diabetes have less energy within their hearts, resulting in less energy to power the pumping of the heart. However, the mechanisms responsible for this energy deficit, and whether therapies could be used to reverse this, have so far been unknown. 

The diabetic heart is a battery half empty - Prof Lisa Heather

New research led by Associate Professor Lisa Heather shows that early on in the development of diabetes, the cardiac mitochondria, known as the cellular power stations, work more slowly. This is due to a post-translational modification of a large number of mitochondrial enzymes. Mitochondrial proteins become hyperacetylated, which decreases the ability of the heart to use fuel for energy production. 

The team then demonstrate that a mitochondrial deacetylase SIRT3 activator, called honokiol, when administered in diabetes is able to reverse the hyperacetylation, speed up mitochondrial function and increase the amount of energy within the heart.

Prof Lisa Heather said: "By identifying the mechanisms and a way to reverse it, honokiol provides a therapeutic route to 'recharge the heart's battery' in diabetes."

"Ultimately, strategies to improve cardiac metabolism and energy generation in type 2 diabetes may provide much needed routes to decrease mortality from cardiovascular disease, the leading cause of death, in diabetes."

 

The full paper "Rescue of myocardial energetic dysfunction in diabetes through the correction of mitochondrial hyperacetylation by honokiol" is available to read in JCI Insight.

DPAG team members who have contributed to this paper include Matthew Kerr, Dr Jack Miller, Dr Kerstin Timm, Claudia Montes Aparicio and Professor Damian Tyler.

Similar stories

Neil Herring to give prestigious Bayliss-Starling Prize Lecture

The annual Prize Lecture from The Physiological Society will provide an opportunity to highlight the importance of the Herring lab's work into the nervous system’s critical role in cardiovascular health and disease.

BHF Senior Fellowship renewal for Duncan Sparrow could pave the way to revealing unknown causes of heart defects in babies

Congratulations are in order for Associate Professor Duncan Sparrow, who has been awarded a renewal of his British Heart Foundation Senior Basic Science Research Fellowship. The award will fund crucial investigations into little understood environmental risk factors of congenital heart disease, and could one day lead to new therapeutic strategies.

Researchers discover novel form of adaptation in the auditory system

DPAG’s auditory neuroscience researchers have found that the auditory system adapts to the changing acoustics of reverberant environments by temporally shifting the inhibitory tuning of cortical neurons to remove reverberation.

Peregrine Green honoured by British Cardiovascular Society

Congratulations are in order for Dr Peregrine Green, who was won a prestigious abstract award at the BCS Annual Conference.

Collaborative team driven by DPAG and Chemistry awarded RSC Horizon Prize

The Molecular Flow Sensor Team, with collaborating members principally from DPAG’s Robbins and Talbot groups and the Department of Chemistry, has been named the winner of the Royal Society of Chemistry’s (RSC) Analytical Division Horizon Prize for the development of a new technology for measuring lung function.