Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

A new paper from the Heather and Tyler groups has uncovered the mechanism responsible for reduced energy in the hearts of patients with type 2 diabetes and revealed a new therapeutic strategy to reverse the energy deficit.

Graphical abstract showing increased energy levels in the heart when mitochondrial deacetylase SIRT3 activator "honokiol" is administered to the diabetic heart, compared to lower levels in the research control group.

Patients with type 2 diabetes have less energy within their hearts, resulting in less energy to power the pumping of the heart. However, the mechanisms responsible for this energy deficit, and whether therapies could be used to reverse this, have so far been unknown. 

The diabetic heart is a battery half empty - Prof Lisa Heather

New research led by Associate Professor Lisa Heather shows that early on in the development of diabetes, the cardiac mitochondria, known as the cellular power stations, work more slowly. This is due to a post-translational modification of a large number of mitochondrial enzymes. Mitochondrial proteins become hyperacetylated, which decreases the ability of the heart to use fuel for energy production. 

The team then demonstrate that a mitochondrial deacetylase SIRT3 activator, called honokiol, when administered in diabetes is able to reverse the hyperacetylation, speed up mitochondrial function and increase the amount of energy within the heart.

Prof Lisa Heather said: "By identifying the mechanisms and a way to reverse it, honokiol provides a therapeutic route to 'recharge the heart's battery' in diabetes."

"Ultimately, strategies to improve cardiac metabolism and energy generation in type 2 diabetes may provide much needed routes to decrease mortality from cardiovascular disease, the leading cause of death, in diabetes."

 

The full paper "Rescue of myocardial energetic dysfunction in diabetes through the correction of mitochondrial hyperacetylation by honokiol" is available to read in JCI Insight.

DPAG team members who have contributed to this paper include Matthew Kerr, Dr Jack Miller, Dr Kerstin Timm, Claudia Montes Aparicio and Professor Damian Tyler.

Similar stories

Researcher publishes children's book of the brain

Postdoctoral Publication

Betina Ip, a Royal Society Dorothy Hodgkin Research Fellow based in NDCN, formerly a postdoctoral research scientist in DPAG, has written a book for children: The Usborne Book of the Brain

Drug trial that could improve respiratory recovery from COVID-19 now underway

Research

A clinical trial has commenced this week to test whether a drug called almitrine can help people who are seriously ill with COVID-19 to recover from the disease.

Same genome, different worlds: How a similar brain causes sexually dimorphic behaviours

CNCB Goodwin Group News Publication Research

A new paper from the Goodwin group based in DPAG's Centre for Neural Circuits and Behaviour has shown how males and females are programmed differently in terms of sex.

New form of gift wrap drives male reproductive success

Publication Research Wilson Group News

The transfer of complex mixtures of signals and nutrients between individuals is a key step in several biologically important events in our lives, such as breastfeeding and sexual intercourse. However, we know relatively little about the ways in which the molecular gifts involved are packaged to ensure their successful delivery to the recipient.

Just over half of British Indians would take COVID vaccine

EDI News Outreach Postdoctoral Publication Research Riley Group News

University of Oxford researchers from the Department of Physiology, Anatomy and Genetics (DPAG) and the Department of Psychiatry, in collaboration with The 1928 Institute, have published a major new study on the impact of COVID-19 on the UK’s largest BME population.