Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

Research led by Dr Alzbeta Hulikova and Professor Pawel Swietach has, for the first time, described the potential regulation of nuclear acid-base chemistry in neonatal and adult cardiomyocytes, and explained its relevance in the context of heart physiology and pathology.

Map of nuclear and cytoplasmic pH recorded in neonatal cardiac cells incubated in various medium pH: 6.24, 6.49, 6.80. 6.98, 7.10 and 7.45. This is colour coded on a scale from 6.1 - 7.6 pH.
Map of nuclear and cytoplasmic pH recorded in neonatal cardiac cells incubated in various medium pH

Intracellular pH has to be tightly regulated in all cells of our body, including cardiac myocytes, as protons (H+) can have a significant impact on protein activity and cellular function. Changes in intracellular pH also often accompany cardiac development or heart pathology.

New research led by Dr Alzbeta Hulikova and Professor Pawel Swietach has shown that early postnatal heart muscle cells show a large diversity in extracellular pH. This can have a significant impact on shaping the cardiac gene expression shortly after birth.

Therefore, researchers have focused on the effect of extracellular pH on gene expression in the heart muscle. By growing cardiac myocytes from neonatal rats in media with different pH, the team were able to identify genes which are pH-sensitive. Most of these pH-sensitive genes are related to cardiac muscle contraction.

Researchers discovered that the expression of genes important for cardiac contraction is dependent on the transcriptional co-factor p300/CBP. They have shown that p300/CBP level of acetylation, namely activity dropped when cells were grown in acidic medium. This was confirmed by ChiP-sequencing, which proved that the acetylation level of histone3 Lys 27 (H3K27Ac) decreased in promoters of the most pH sensitive genes coding for Crip2 and slow skeletal troponin I (Tnni1).

As the regulation of gene expression takes place in the nucleus, Dr Hulikova and her team wanted to directly measure nuclear pH.  They were the first to map the relationship between nuclear and cytoplasmic pH. The team's measurements have shown that nuclear pH regulation is partially independent from the pH regulation in cytoplasm. Neonatal cardiac myocytes tend to have a slightly more alkaline nucleoplasm than cytoplasm. Whereas in healthy paced adult myocytes the nuclei were mildly acidic compared to the surrounding cytoplasm. Using different salt concentration and small molecule inhibitors we have shown that the SERCA and NHE1 transporters are likely to be involved in the maintenance of pH differences across nuclear envelope. These nuclear pH differences are important in heart pathology, and are significantly dysregulated in myocytes from cryo-infarcted adult rats or sheep with heart failure.

For the first time, researchers have described the possible regulation of nuclear acid-base chemistry in neonatal and adult cardiomyocytes. In doing so, they explain how it is relevant in the context of heart physiology and cardiac development, and in pathology, namely cardiac ischaemia and heart failure.

The full paper "Alkaline nucleoplasm facilitates contractile gene expression in the mammalian heart" is available to read in "Basic Research in Cardiology". 

Text credit to Dr Alzbeta Hulikova

Similar stories

Neil Herring to give prestigious Bayliss-Starling Prize Lecture

The annual Prize Lecture from The Physiological Society will provide an opportunity to highlight the importance of the Herring lab's work into the nervous system’s critical role in cardiovascular health and disease.

BHF Senior Fellowship renewal for Duncan Sparrow could pave the way to revealing unknown causes of heart defects in babies

Congratulations are in order for Associate Professor Duncan Sparrow, who has been awarded a renewal of his British Heart Foundation Senior Basic Science Research Fellowship. The award will fund crucial investigations into little understood environmental risk factors of congenital heart disease, and could one day lead to new therapeutic strategies.

Researchers discover novel form of adaptation in the auditory system

DPAG’s auditory neuroscience researchers have found that the auditory system adapts to the changing acoustics of reverberant environments by temporally shifting the inhibitory tuning of cortical neurons to remove reverberation.

Peregrine Green honoured by British Cardiovascular Society

Congratulations are in order for Dr Peregrine Green, who was won a prestigious abstract award at the BCS Annual Conference.

Collaborative team driven by DPAG and Chemistry awarded RSC Horizon Prize

The Molecular Flow Sensor Team, with collaborating members principally from DPAG’s Robbins and Talbot groups and the Department of Chemistry, has been named the winner of the Royal Society of Chemistry’s (RSC) Analytical Division Horizon Prize for the development of a new technology for measuring lung function.