Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

A new discovery from the Lakhal-Littleton Group on how iron deficiency affects the vasculature of the lung could hold the key to improving treatment of pulmonary arterial hypertension.

This new paper from the Lakhal-Littleton Group describes the way in which iron deficiency affects our vasculature, in particular the vasculature of the lung.

Iron deficiency is the most common nutritional disorder in the word.  Its prevalence is particularly high in patients with cardiovascular diseases, in whom it is associated with poor outcome.

It has been known for some time that iron deficiency predisposes to pulmonary arterial hypertension (PAH). In this condition, the vasculature in the lungs is constricted and remodelled, and this puts pressure on the right side of the heart. For some time it was thought that PAH is caused by anaemia, a condition in which iron deficiency is the underlying mechanism. Consequently, the only consideration given to iron deficiency in the clinical setting has been in the context of correcting anaemia.

However, previous work from this laboratory has shown that iron deficiency within tissues, such as the heart, is sufficient to cause disease even in the absence of anaemia. Through eLife publication, “An essential cell-autonomous role for hepcidin in cardiac iron homeostasis”, Prof Lakhal-Littleton and her team revealed the first study describing the mechanism linking iron deficiency with heart disease. 

This new study explores the links between iron deficiency and PAH. It has found that iron deficiency within the smooth muscle cells of the pulmonary arteries is in itself sufficient to cause PAH, even in the absence of anaemia. The effect of iron deficiency is due to increased release of the vasoconstrictor endothelin-1 from cells of the pulmonary arteries.

Prof Lakhal-Littleton and her team were able to reverse and prevent PAH in mice by both iron supplementation and inhibition of endothelin-1 signalling. Consequently, this study provides a mechanistic underpinning for the observation that iron deficiency raises hypoxic pulmonary arterial pressure in healthy individuals and worsens existing PAH in patients. 

Ultimately, this paper demonstrates that it is not anaemia, but rather the lack of iron in the cells of the vasculature that is causing the remodelling of the vessels in the lung present in individuals suffering from PAH. Therefore, it strengthens the rationale for correction of tissue iron deficiency independently of the presence or absence of anaemia.

 

It holds potential to alter the way in which patients with pulmonary arterial hypertension are treated. Now that this study is published, it provides the rationale for giving iron to patients even when they aren't anaemic, because the target is no longer anaemia, but iron deficiency within tissues. - Associate Professor Samira Lakhal-Littleton

Read the full paper Intracellular iron deficiency in pulmonary arterial smooth muscle cells causes pulmonary arterial hypertension in mice published in PNAS, here.

The full interview with Associate Professor Samira Lakhal-Littleton is available with subtitles here, where she also discusses the implications of this study on future research avenues.

More information is also available on the University of Oxford website.

SLL lab- summary slide.png

Similar stories

Just over half of British Indians would take COVID vaccine

EDI News Outreach Postdoctoral Publication Research Riley Group News

University of Oxford researchers from the Department of Physiology, Anatomy and Genetics (DPAG) and the Department of Psychiatry, in collaboration with The 1928 Institute, have published a major new study on the impact of COVID-19 on the UK’s largest BME population.

Thomas Willis (1621 - 1675) 400th Birthday - Alastair Buchan in conversation with Zoltán Molnár

General Research

Professor Zoltán Molnár talks to Pro-Vice-Chancellor Professor Alastair Buchan to learn more about Thomas Willis's residence and base for scientific discoveries, Beam Hall.

Thomas Willis (1621 - 1675) 400th Birthday - Erica Charters in conversation with Zoltán Molnár

General Research

Professor Zoltán Molnár talks to Dr Erica Charters for a History of Medicine perspective on Oxford physician and Father of Neurology Thomas Willis.

Thomas Willis 400th anniversary trailer

General Research

On 27 January 2021 we celebrate the 400th anniversary of the birth of the greatest neuroanatomist of all time, Thomas Willis. DPAG's Professor Zoltán Molnár has interviewed 8 experts - watch a video preview of what's to come from Monday onwards! With thanks to St John's College.

Earliest origins of the forming heart identified

Cardiac Theme Postdoctoral Publication Research

The earliest known progenitor of the outermost layer of the heart has been characterised for the first time and linked to the development of other critical cell types in the developing heart in a new paper from the Srinivas group led by BHF Immediate Fellow Dr Richard Tyser.

Covid-19 lung damage identified in study

Postdoctoral Research

In a new study into the longer-term damage amongst patients recovering from COVID-19, DPAG Research Fellow Dr James Grist of the Tyler Lab has been running a novel scanning technique that shows a dramatic decrease in the ability of the lungs to diffuse gas in to the blood stream after COVID infection. This work may shed light on the problem of breathlessness after COVID infection and help guide us in understanding therapeutic selection and efficacy.