Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

DPAG researchers have collaborated on an international study that demonstrates a detailed mechanistic understanding of how the anti-malaria drug, Hydroxychloroquine, combined with antibiotics, can cause adverse cardiac side-effects in COVID-19 patients. This gives weight to US Federal advice against using this combined treatment.

Cardiac mapping (top panel: whole heart) and prolongation of cardiac action potential (bottom panel: single cell)

Hydroxychloroquine (HCQ), a drug normally used to treat malaria, has recently been touted as a potential treatment for coronavirus. International interest in the drug was raised following reports of US President Donald Trump taking the drug to ward off COVID-19 and there have been clinical trials in several countries testing its effectiveness. However, many scientists have warned about side effects of using HCQ, which has led to the World Health Organisation temporarily suspending several studies over safety fears. 

Recent reports on the use of HCQ alone, or combined with an antibiotic called azithromycin (AZM), in the management of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have specifically raised concerns over cardiac safety. However, so far little has been known about the mechanisms behind HCQ and AZM therapy to help evaluate cardiac safety, and therefore conclusively determine if it is unsafe for the heart.

A new international study, on which the groups of Professor David Paterson, with Dr Dan Li, and Associate Professor Neil Herring have collaborated, has provided mechanistic insight into how HCQ alone and HCQ with AZM affects cardiac electrophysiology. The paper, senior authored by former DPAG Postdoctoral Research Scientist Dr Guoliang Hao, has shown that HCQ slows heart rate and prolongs the ventricular action potential duration making the heart prone to arrhythmia. These effects become more prominent when administering HCQ and AZM together, which demonstrates that combining HCQ with antibiotics could potentially cause dangerous prolongation of the QT interval, making the heart more susceptible to afterdepolarisation and sudden death, especially in patients with sepsis or COVID-19 where hypotension is present.

To uncover these results, researchers used the Comprehensive In-vitro Pro-arrhythmia Assay (CiPA) guidelines to combine patch clamp studies of individual ion channels, whole heart voltage, Ca2+ and electrocardiographic measurements, along with human in-silico modelling to directly assess the pro-arrhythmic potential of these drugs. In doing so, the team has provided a detailed electrophysiological basis for recent guidelines issued by the US Food and Drug Administration (FDA) cautioning against combined HCQ/AZM treatment for COVID-19 on the grounds of cardiac safety. Based on their data, the team strongly recommends monitoring the heart, specifically the electrocardiographic QT interval, for adverse affects when these drugs are prescribed.

 

Click the link "Mechanistic insights into ventricular arrhythmogenesis of hydroxychloroquine and azithromycin for the treatment of COVID-19" to access the full paper.

On Monday 25 May the WHO withdrew support for clinical trials involving HCQ, citing concerns over cardiac biosafety.

Similar stories

New evidence for how our brains handle surprise

A new study from the Bruno Group is challenging our perceptions of how the different regions of the cerebral cortex function. A group of ‘quiet’ cells in the somatosensory cortex that rarely respond to touch have been found to react mainly to surprising circumstances. The results suggest their function is not necessarily driven by touch, but may indicate an important and previously unidentified role across all the major cortices.

Professor Dame Sue Black to deliver 2022 Christmas Lectures

In the 2022 Christmas Lectures from the Royal Institution, DPAG's Visiting Professor of Forensic Anatomy Dame Sue Black will share secrets of forensic science.

Kaitlyn Dennis to receive the William C Stanley Early Investigator Award

Congratulations are in order for DPhil student Kaitlyn Dennis, who has been awarded the William C Stanley Early Investigator Award. The award highlights the scientific accomplishments of promising young researchers and is a major focus of the Annual Meeting of the Society for Heart and Vascular Metabolism.

Researchers describe how cancer cells can defend themselves from the consequences of certain genetic defects

Swietach Group scientists have identified a rescue mechanism that allows cancers to overcome the consequences of inactivating mutations in critically important genes.

Randy Bruno and Scott Waddell receive Wellcome Discovery Awards

Congratulations are in order for Professors Randy Bruno and Scott Waddell who have each been awarded a prestigious Wellcome Trust Discovery Award to significantly enhance our understanding of higher cognitive functions.