Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

DPAG researchers have collaborated on an international study that demonstrates a detailed mechanistic understanding of how the anti-malaria drug, Hydroxychloroquine, combined with antibiotics, can cause adverse cardiac side-effects in COVID-19 patients. This gives weight to US Federal advice against using this combined treatment.

Cardiac mapping (top panel: whole heart) and prolongation of cardiac action potential (bottom panel: single cell)

Hydroxychloroquine (HCQ), a drug normally used to treat malaria, has recently been touted as a potential treatment for coronavirus. International interest in the drug was raised following reports of US President Donald Trump taking the drug to ward off COVID-19 and there have been clinical trials in several countries testing its effectiveness. However, many scientists have warned about side effects of using HCQ, which has led to the World Health Organisation temporarily suspending several studies over safety fears. 

Recent reports on the use of HCQ alone, or combined with an antibiotic called azithromycin (AZM), in the management of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have specifically raised concerns over cardiac safety. However, so far little has been known about the mechanisms behind HCQ and AZM therapy to help evaluate cardiac safety, and therefore conclusively determine if it is unsafe for the heart.

A new international study, on which the groups of Professor David Paterson, with Dr Dan Li, and Associate Professor Neil Herring have collaborated, has provided mechanistic insight into how HCQ alone and HCQ with AZM affects cardiac electrophysiology. The paper, senior authored by former DPAG Postdoctoral Research Scientist Dr Guoliang Hao, has shown that HCQ slows heart rate and prolongs the ventricular action potential duration making the heart prone to arrhythmia. These effects become more prominent when administering HCQ and AZM together, which demonstrates that combining HCQ with antibiotics could potentially cause dangerous prolongation of the QT interval, making the heart more susceptible to afterdepolarisation and sudden death, especially in patients with sepsis or COVID-19 where hypotension is present.

To uncover these results, researchers used the Comprehensive In-vitro Pro-arrhythmia Assay (CiPA) guidelines to combine patch clamp studies of individual ion channels, whole heart voltage, Ca2+ and electrocardiographic measurements, along with human in-silico modelling to directly assess the pro-arrhythmic potential of these drugs. In doing so, the team has provided a detailed electrophysiological basis for recent guidelines issued by the US Food and Drug Administration (FDA) cautioning against combined HCQ/AZM treatment for COVID-19 on the grounds of cardiac safety. Based on their data, the team strongly recommends monitoring the heart, specifically the electrocardiographic QT interval, for adverse affects when these drugs are prescribed.

 

Click the link "Mechanistic insights into ventricular arrhythmogenesis of hydroxychloroquine and azithromycin for the treatment of COVID-19" to access the full paper.

On Monday 25 May the WHO withdrew support for clinical trials involving HCQ, citing concerns over cardiac biosafety.

Similar stories

Thomas Willis (1621 - 1675) 400th Birthday - Alastair Buchan in conversation with Zoltán Molnár

General Research

Professor Zoltán Molnár talks to Pro-Vice-Chancellor Professor Alastair Buchan to learn more about Thomas Willis's residence and base for scientific discoveries, Beam Hall.

Thomas Willis (1621 - 1675) 400th Birthday - Erica Charters in conversation with Zoltán Molnár

General Research

Professor Zoltán Molnár talks to Dr Erica Charters for a History of Medicine perspective on Oxford physician and Father of Neurology Thomas Willis.

Thomas Willis 400th anniversary trailer

General Research

On 27 January 2021 we celebrate the 400th anniversary of the birth of the greatest neuroanatomist of all time, Thomas Willis. DPAG's Professor Zoltán Molnár has interviewed 8 experts - watch a video preview of what's to come from Monday onwards! With thanks to St John's College.

Earliest origins of the forming heart identified

Cardiac Theme Postdoctoral Publication Research

The earliest known progenitor of the outermost layer of the heart has been characterised for the first time and linked to the development of other critical cell types in the developing heart in a new paper from the Srinivas group led by BHF Immediate Fellow Dr Richard Tyser.

Covid-19 lung damage identified in study

Postdoctoral Research

In a new study into the longer-term damage amongst patients recovering from COVID-19, DPAG Research Fellow Dr James Grist of the Tyler Lab has been running a novel scanning technique that shows a dramatic decrease in the ability of the lungs to diffuse gas in to the blood stream after COVID infection. This work may shed light on the problem of breathlessness after COVID infection and help guide us in understanding therapeutic selection and efficacy.

A clue to how a memory-enhancing pill might work

CNCB Publication Research

Hundreds of dietary supplements have been reported to improve cognitive and emotional function in humans, but few have scientific foundation. A new study from the Waddell group provides fresh insight into how dietary Magnesium supplementation can influence memory performance.