Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

The Mexican tetra fish can repair its heart after damage. Key British Heart Foundation funded research from the Mommersteeg Group, published in Cell Reports and entitled "Heart regeneration in the Mexican cavefish" suggests that a particular gene may hold the key to this inherent ability. If they can lock down exactly how this works, it may be possible to revolutionise how we heal damaged human hearts.

Photo Credit: Colin Beesley

Research into a Mexican cavefish could inspire change in the way human heart failure is treated. This key Mommersteeg Group research has been funded by the British Heart Foundation, and is now published in Cell Reports.

Many members of DPAG will remember Associate Professor Mathilda Mommersteeg giving a talk about her team’s research at the departmental Away Day event on July 3 2018. This publication is an important development with far reaching implications for future heart failure treatments.

Some fish, like the zebrafish, have an amazing ability to repair their hearts after damage. Associate Professor Mommersteeg and her team have now identified a new fish model that can help find out what is so unique in fish that they can repair their hearts.

Astyanax mexicanus is a fish species from Northern Mexico with cave-dwelling and river populations. Millions of years ago, some fish living in rivers, flooded into caves. River levels retreated over time and the fish became trapped in the caves. The fish started to evolve to adapt to cave life, for example, they lost their eyes and pigment.

"We have discovered that, like zebrafish, the river surface fish regenerate their heart, while, cavefish cannot and form a permanent scar, similar to the human injury response after a heart attack. This finding is important as it allows to directly compare a ‘fish-like’ regenerative response with a ‘human-like’ scarring response within the same species. If we can find out what it is that allows fish to regenerate their hearts, we can apply this knowledge to heal the heart of patients after a heart attack." Associate Professor Mommersteeg

Research Assistant, William Stockdale, the first author on the paper, explains how they conducted their research in more detail:

"As part of the paper, we compared the surface fish and cave fish responses after injury, and identified many new genes potentially key to regeneration. We explored the role of one such gene, lrrc10, in zebrafish. Interestingly, deletion of lrrc10 in zebrafish resulted in a cavefish-like response after injury - finding it to be a novel factor required for heart regeneration. Finding these new key genes and exploring their role in heart regeneration, like lrrc10, is important to piecing together the puzzle of natural regeneration."

 

Read the full Cell Reports paper here.

More information, including a handy animation summarising the research, is available on the British Heart Foundation website and The University of Oxford website.

Similar stories

REF 2021 results

DPAG researchers showcased at premier European Society of Cardiology meeting

DPAG scientists across four research groups were highlighted at the major annual European Society of Cardiology basic science conference (FCVB 2022). Congratulations are in order for Dr KC Park on receiving the Young Investigator Award and to Dr Elisabetta Gamen on winning the Moderated Poster Prize.

Oxford Parkinson’s Disease Centre awarded £3.8 million to reveal the role of calcium in Parkinson’s

A collaborative research team led by the Oxford Parkinson’s Disease Centre (OPDC) has been awarded a £3.8 million Wellcome Trust Collaborative Award to study the function of calcium in dopamine neurons, and how this is plays a role in Parkinson’s. Their research will help explain how and why dopamine neurons are vulnerable in the disease and look at how they may be preserved.

The effect of nuclear pH on cardiac gene expression

Research led by Dr Alzbeta Hulikova and Professor Pawel Swietach has, for the first time, described the potential regulation of nuclear acid-base chemistry in neonatal and adult cardiomyocytes, and explained its relevance in the context of heart physiology and pathology.

A role of sleep in tinnitus identified for the first time

Phantom percepts, such as subjective tinnitus, are driven by fundamental changes in spontaneous brain activity. Sleep is a natural example of major shifts in spontaneous brain activity and perceptual state, suggesting an interaction between sleep and tinnitus that has so far been little considered. In a new collaborative review article from DPAG’s auditory and sleep neuroscientists, tinnitus and sleep research is brought together for the first time, and, in conclusion, they propose a fundamental relationship between natural brain dynamics and the expression and pathogenesis of tinnitus.