Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Animals must navigate complex visual environments, ensuring they avoid dangers while also foraging for food or finding a mate. To succeed, animals must identify relevant visual cues and interpret them in relation to their external circumstances and internal state, ensuring they respond appropriately. Visual information is perceived non-discriminately in the eye; however, how the animal responds to this information is determined in the brain. Understanding how the brain transforms complex visual stimuli into complex behaviour patterns remains a significant challenge in behavioural neuroscience. The elegant courtship display of the male vinegar fly Drosophila melanogaster is ideally suited to address this challenge. To reproduce successfully, Drosophila males are hardwired, having the ability to navigate complex environments and identify a mate. The interpretation of the female as a potential mate triggers a behavioural switch in males, setting off an elaborate behavioural display: males persistently pursue the female while intermittently singing her a courtship song through the extension and vibration of a single wing. Meanwhile, the female continuously decamps and rejects the male's advances, giving her time to assess his suitability as a mate before she sanctions the mating. This switch in the males' behavioural pattern is triggered when a sexual arousal threshold is reached, a stable internal state ensuring males persist in pursuing the female. Interestingly, this behavioural switch must also be flexible. If males, once aroused, find the female is, in fact, a different species or sex, they must switch back to their pre-arousal behavioural patterns. Studies in the vinegar fly Drosophila melanogaster can provide insights into general principles of how brains use sensory information, like visual stimuli, to guide behaviour and how internal state changes, such as arousal, modify these sensorimotor programs. Working with flies has the advantage of using a vast array of genetic tools that allows us to identify and manipulate relevant neurons in the brain. Using these tools, we will study a group of sexually-dimorphic neurons involved in visual integration critical to male courtship behaviour and reproductive success.This proposal will be an ideal entry point into our understanding of how animals integrate external sensory information with their internal state to make an appropriate context-dependent decision.