Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

A study carried out by the research group led by Prof Zaccolo provides novel insight into how the heart reacts to the fight-or-flight response to stress

Nature Communications

Image by M Machado and S Pantano

 

Prof Zaccolo explains their research and its significance below:

The primordial fight-or-flight response is a physiological reaction to stress. Under stress, the hormones adrenaline and noradrenaline trigger the production of a small signalling molecule, cAMP, that acts inside the cell to activate the appropriate reaction to the stressful situation. We developed a method, based on the use of fluorescent light, which allows us to see cAMP inside living cells. We have applied this technique to study the reaction of the heart to stress and we discovered a surprising feature of cAMP signals. We found that when adrenaline instructs the cardiac cells to generate cAMP, a multitude of different cAMP signals are generated. Each of these cAMP signals has a different function and is confined to a minuscule space within the cell, only a few millionths of a millimetre in size. We also found that in disease conditions, for example in heart failure, these tiny signals are disrupted. 

We are very excited about our findings because they offer the opportunity to think about treatment of cardiac disease in a completely new perspective. Current drugs typically use a ‘blanket’ approach, their action occurs indiscriminately across the entire cell.  If we understand how the tiny cAMP signals are generated in the heart - and we have already some good hints - we can target them individually and be more precise in the therapeutic intervention, increasing efficacy while minimising side effects.

Their paper "FRET biosensor uncovers cAMP nano-domains at β-adrenergic targets that dictate precise tuning of cardiac contractility" was published in Nature Communications.

The research published in this article was funded by the British Heart Foundation and the Oxford BHF CRE.

Read the full article here.

 

Similar stories

Oxford-led research maps milestone stage of human development for the first time

Scientists have shed light on an important stage of early embryonic development that has never been fully mapped out in humans before.

Mapping uncharted networks in the progression of Parkinson’s

A major new $9 million project funded by the Aligning Science Across Parkinson’s (ASAP) initiative will map the original circuits vulnerable to Parkinson’s on an unprecedented scale. The project is a collaboration between core investigators Stephanie Cragg, Richard Wade-Martins, and Peter Magill at Oxford, Mark Howe at Boston University and Dinos Meletis at the Karolinska Institutet, as well as collaborators Yulong Li at Peking University and Michael Lin at Stanford University.

Drug could help diabetic hearts recover after a heart attack

New research led by Associate Professor Lisa Heather has found that a drug known as molidustat, currently in clinical trials for another condition, could reduce risk of heart failure after heart attacks.

DPAG Researchers honoured for their work in cardiac metabolism

Kaitlyn Dennis, Ujang Purnama and Kerstin Timm have won prizes across each of the three award categories at this year’s Society for Heart and Vascular Metabolism conference, demonstrating DPAG's continued excellence in cardiac metabolism research.

Richard Tyser and Jack Miller honoured by the British Society of Cardiovascular Research

Dr Richard Tyser is this year’s winner of the Bernard and Joan Marshall Early Career Investigator Prize, and Dr Jack Miller has received a runner-up award, at the British Society of Cardiovascular Research Autumn Meeting.