Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

The destruction of red blood cells known as hemolysis in the newborn baby is very dangerous, but existing clinical methods are not sufficient for rapid diagnosis and can lead to delays early-life care. A new Swietach Group paper has identified a biomarker that could significantly speed up the process.

© Shutterstock Images

Hemolytic disease in newborn babies is a blood disorder whereby the red blood cells break down at a fast rate. Hemolysis in the newborn can be life threatening, yet direct assays for rapid diagnosis are not currently available for regular monitoring. Instead, current clinical management relies on resource-intensive measurements of downstream ramifications, which potentially delays critical decisions in early-life care.

Using a cohort of newborn infants manifesting various hemolytic states, a team led by DPAG’s Associate Professor Pawel Swietach has demonstrated that intravascular hemolysis can be detected by measuring CAI excretion in a small sample of urine using cost-effective immunoreactivity techniques. This biomarker is the most direct and immediate readout of hemolysis, and has the potential to be measured by kits similar to those used in pregnancy tests for point-of-care use.

According to Prof Swietach: "This method can improve resource allocation, identify ‘at-risk’ patients earlier, and may be implemented under minimal-laboratory conditions. The method can also address the inadequacy of testing capacity in developing regions, where haemolytic triggers tend to be more common, and include protozoan infections (such as malaria), sepsis, birth trauma and various genetic traits, such as sickle cell and G6PDD."

The full paper, first authored by Postdoctoral Research Scientist Dr Alzbeta Hulikova, "Detection of Intravascular Hemolysis in Newborn Infants Using Urinary Carbonic Anhydrase I Immunoreactivity" can be read in The Journal of Applied Laboratory Medicine.

Similar stories

The brain’s one-sided teaching signals

A new study by the Lak group reveals a novel facet of dopamine signalling during visual decision making.

Fellowship awarded to Huriye Atilgan to enhance our understanding of value-based decision-making

Congratulations are in order for Postdoctoral Research Scientist Dr Huriye Atilgan who has been awarded a prestigious Sir Henry Wellcome Postdoctoral Fellowship funded by the Wellcome Trust.

The future of stroke treatment

A team of international collaborators including DPAG's Dr Mootaz Salman has been researching a promising new therapeutic for the treatment of strokes and other brain injuries.

New review reveals proof of concept for an anti-obesity immunotherapy

The Domingos lab has published a new opinion piece in Science investigating the implications of a Memorial Sloan Kettering Cancer Center study that lays the foundations for a potential new anti-obesity treatment in the form of targeting adipose tissue-resident macrophages.

New pathway established for multisensory cortical communication

Integration of information across the senses is critical for perception. This activity is thought to arise primarily from connections made in the brain's sensory cortical areas. A new paper from the King Group uncovers evidence for the first time on the little understood role of subcortical circuits in shaping the multisensory properties of primary cortical neurons.