Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The destruction of red blood cells known as hemolysis in the newborn baby is very dangerous, but existing clinical methods are not sufficient for rapid diagnosis and can lead to delays early-life care. A new Swietach Group paper has identified a biomarker that could significantly speed up the process.

© Shutterstock Images

Hemolytic disease in newborn babies is a blood disorder whereby the red blood cells break down at a fast rate. Hemolysis in the newborn can be life threatening, yet direct assays for rapid diagnosis are not currently available for regular monitoring. Instead, current clinical management relies on resource-intensive measurements of downstream ramifications, which potentially delays critical decisions in early-life care.

Using a cohort of newborn infants manifesting various hemolytic states, a team led by DPAG’s Associate Professor Pawel Swietach has demonstrated that intravascular hemolysis can be detected by measuring CAI excretion in a small sample of urine using cost-effective immunoreactivity techniques. This biomarker is the most direct and immediate readout of hemolysis, and has the potential to be measured by kits similar to those used in pregnancy tests for point-of-care use.

According to Prof Swietach: "This method can improve resource allocation, identify ‘at-risk’ patients earlier, and may be implemented under minimal-laboratory conditions. The method can also address the inadequacy of testing capacity in developing regions, where haemolytic triggers tend to be more common, and include protozoan infections (such as malaria), sepsis, birth trauma and various genetic traits, such as sickle cell and G6PDD."

The full paper, first authored by Postdoctoral Research Scientist Dr Alzbeta Hulikova, "Detection of Intravascular Hemolysis in Newborn Infants Using Urinary Carbonic Anhydrase I Immunoreactivity" can be read in The Journal of Applied Laboratory Medicine.

Similar stories

Key cause of type 2 diabetes uncovered

Research led by Dr Elizabeth Haythorne and Professor Frances Ashcroft reveals high blood glucose reprograms the metabolism of pancreatic beta-cells in diabetes. They have discovered that glucose metabolites, rather than glucose itself, are key to the progression of type 2 diabetes. Glucose metabolites damage pancreatic beta-cell function, so they are unable to release enough of the hormone insulin. Reducing the rate at which glucose is metabolised, and these glucose metabolites build up, can prevent the effects of hyperglycaemia.

New study shows clinical symptoms for Alzheimer’s can be predicted in preclinical models

Establishing preclinical models of Alzheimer’s that reflect in-life clinical symptoms of each individual is a critically important goal, yet so far it has not been fully realised. A new collaborative study from the University of Oxford has demonstrated that clinical vulnerability to an abnormally abundant protein in Alzheimer’s brain is in fact reflected in individual patient induced pluripotent stem cell-derived cortical neurons.

Updating the circuit maps of the sympathetic neural network

A new review from Professor Ana Domingos’ lab and colleagues offers a fresh modern viewpoint on sympathetic neurons and their relation to immune cells and obesity.

New Pfizer grant paves the way to a better understanding of how body fat is controlled

Professor Ana Domingos has been awarded a highly competitive independent research grant from Pfizer to discover ‘the role of Sympathetic-associated Perineurial barrier Cells in obesity’.

Collaborative MRC grant paves the way to new therapeutic targets for stress and anxiety disorders

Dr Armin Lak, Associate Professor Ed Mann and Professor Zoltán Molnár have been awarded a £733K Project Grant from the Medical Research Council on “Orexinergic projections to neocortex: potential role in arousal, stress and anxiety-related disorders”.