Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

Thousands of genes are involved in the regulation of our day-to-day metabolism and relatively little is understood about their function. One key protein, an ABC Transporter called ABCC5, has recently been predicted to be a susceptibility gene for Type 2 diabetes. In a new study selected as Editor's Choice in Obesity, Associate Professor Heidi de Wet has confirmed ABCC5's role in energy metabolism and identified the mechanism behind its metabolic impact for the first time.

Rare gut endocrine cells visualised using green fluorescence (left) and electron microscopy (right)

A multitude of physiological signals regulates our appetite and metabolism. An empty stomach triggers the “hunger hormone”, Ghrelin, which acts on the brain to stimulate feelings of hunger. When the stomach becomes full, those hunger signals are muted. The arrival of digested food in the small intestine from the stomach engages with hormone-secreting cells known as enteroendocrine cells. These cells are the first point of contact between you and your food: the digested food triggers receptors on these endocrine cells causing them to release hormones into the circulatory system. These hormones have very important downstream effects: they regulate the release of insulin from the pancreas, prompt capillaries to move blood towards the stomach to absorb the food, trigger feelings of satiety in the brain, and interacts with the liver, muscle and fat to enable it to absorb glucose. In essence, “these hormones are spectacularly important because they drive human metabolism in response to food.” (Prof de Wet).

ATP-binding cassette transporters (ABC transporters) are proteins found in cell membranes that transport various substances in and out of the cell. This family of transporters is very well known in the context of certain diseases. Loss of function mutations in the CFTR gene (ABCC7) can cause the respiratory disease Cystic Fibrosis, while gain of function mutations in the multidrug resistance-associated protein 1 (ABCC1) can cause a tumour to become resistant to chemotherapy. However, the function of one of these transporters, an orphan transporter called ABCC5, was unknown for some time, until a recent study found compelling evidence for its key role in energy metabolism.

A Genome-Wide Association Study used subcutaneous adipose tissue from patients and control subjects stored as part of a diabetes biobank. The study demonstrated that overexpression of ABCC5 in human adipose tissue would cause their subjects to have a three-fold increased risk of developing type 2 diabetes with age. The individuals with increased levels of ABCC5 had increased visceral fat accumulation and were more insulin resistant. Consequently, the study predicted that ABCC5 may be the new susceptibility gene for Type 2 diabetes. However, the mechanism behind this susceptibility was unknown.

In order to confirm the role of ABCC5 in energy metabolism and understand the mechanism behind ABCC5’s metabolic impact, a team led by Associate Professor Heidi de Wet knocked the gene out in mice using a CRISPR technique and examined their metabolic profile. Distinctly opposite to the human overexpression phenotype, mice with no ABCC5 were lean, had less fat and were more active. They also demonstrated increased insulin sensitivity and increased amounts of gut hormone being released in response to an oral glucose dose. “These mice were probably metabolically more healthy because they were able to respond better to the amount of food arriving in their small intestine. But, still we were unsure of the mechanism; how does ABCC5 manage to get more gut hormone released into the blood stream of these mice?” (Prof de Wet).

Upon further investigation, the team were able to show that ABCC5 is most likely a neuropeptide transporter, meaning its function is to load neuropeptides into vesicles inside cells. The vesicle content is then released by a process called exocytosis, which refers to the series of events triggered when the receptors in enteroendocrine cells detect digested food, culminating in the secretion of hormones from these cells. “Neuropeptides are information molecules, and these information molecules can be dumped into the circulation to tell your body how to respond to the arrival of digested food in the stomach.” (Prof de Wet). Once the vesicle content is released, the hormones are then free to act on downstream targets. 

For the first time, the role of ABCC5 in glucose metabolism and in the regulation of metabolism in humans has been established. The de Wet Group has been able to find a direct link between ABCC5, its metabolic impact as predicted in the Genome-Wide Association Study, and the specific function this ABC transporter has in the gut.

 

The full paper "Abcc5 Knockout Mice Have Lower Fat Mass and Increased Levels of Circulating GLP‐1" is available to read in Obesity. The paper is Editor's Choice in the August issue.

This story is featured on the Oxford Science Blog.

Similar stories

Thomas Willis (1621 - 1675) 400th Birthday - Alastair Buchan in conversation with Zoltán Molnár

General Research

Professor Zoltán Molnár talks to Pro-Vice-Chancellor Professor Alastair Buchan to learn more about Thomas Willis's residence and base for scientific discoveries, Beam Hall.

Thomas Willis (1621 - 1675) 400th Birthday - Erica Charters in conversation with Zoltán Molnár

General Research

Professor Zoltán Molnár talks to Dr Erica Charters for a History of Medicine perspective on Oxford physician and Father of Neurology Thomas Willis.

Thomas Willis 400th anniversary trailer

General Research

On 27 January 2021 we celebrate the 400th anniversary of the birth of the greatest neuroanatomist of all time, Thomas Willis. DPAG's Professor Zoltán Molnár has interviewed 8 experts - watch a video preview of what's to come from Monday onwards! With thanks to St John's College.

Earliest origins of the forming heart identified

Cardiac Theme Postdoctoral Publication Research

The earliest known progenitor of the outermost layer of the heart has been characterised for the first time and linked to the development of other critical cell types in the developing heart in a new paper from the Srinivas group led by BHF Immediate Fellow Dr Richard Tyser.

Covid-19 lung damage identified in study

Postdoctoral Research

In a new study into the longer-term damage amongst patients recovering from COVID-19, DPAG Research Fellow Dr James Grist of the Tyler Lab has been running a novel scanning technique that shows a dramatic decrease in the ability of the lungs to diffuse gas in to the blood stream after COVID infection. This work may shed light on the problem of breathlessness after COVID infection and help guide us in understanding therapeutic selection and efficacy.

A clue to how a memory-enhancing pill might work

CNCB Publication Research

Hundreds of dietary supplements have been reported to improve cognitive and emotional function in humans, but few have scientific foundation. A new study from the Waddell group provides fresh insight into how dietary Magnesium supplementation can influence memory performance.