Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

Scientists from the Departments of Physiology, Anatomy & Genetics and Pharmacology at the University of Oxford have discovered that a well-known, generic drug (‘drug X’), the safety of which is well documented, acts as a low-dose, heart rate lowering agent by targeting the if current.

Inventor: Dr Rebecca Burton, University Challenge Seed Fund, Isis Innovation (PI: Dr Rebecca Burton, Co-PIs Prof David Paterson, Prof Derek Terrar, Dr Gil Bub)

Source: Isis Insight (Issue 75, Spring 2014)

Global killer

Cardiovascular diseases (CVDs) are the principle cause of non-communicable disease related deaths worldwide. In 2008 the World Health Organisation estimated that CVDs led to approximately 17 million deaths worldwide. Whilst mortality rates from CVDs in high-income countries like the United Kingdom continue to fall, it is still the most common cause of death and accounts for more than 900,000 patients per year coupled with approximately one million NHS inpatient bed days. CVDs are also the main cause of death in the EU, killing over two million people annually and costing the economy nearly €192 billion. With ageing populations and unhealthy lifestyles it is projected that the levels of CVD-related morbidity and associated health-economic costs will continue to rise significantly over the next 25 years.

Bradycardic agents

Commonly used treatments for CVDs and related symptoms include β-blockers and calcium-channel blockers but these agents have significant limitations. β-blockers, for example can cause hypotension, cardiac failure, bronchospasm, worsening of asthma symptoms, and rebound flare of angina. It is well established that a high resting heart rate increases the risk of a cardiac event such as arrhythmias and sudden cardiac death. Consequently, agents that induce a reduction in heart rate (bradycardia) without affecting ventricular contractility are of major interest as potential treatments for ischaemic heart disease and heart failure. Ivabradine (Procoralan, Servier Laboratories) is currently the only marketed drug which is a bradycardic agent that selectively and specifically inhibits the cardiac pacemaker If current, which controls the spontaneous diastolic depolarisation in the sinus node and determines heart rate. However, Ivabradine is not without its drawbacks and is known to cause a number of side-effects, most notably a temporary brightness in the field of vision (‘luminous phenomenon’). Furthermore, the clinical utility of Ivabradine is limited in certain patient groups, including children, pregnant women and the visually impaired. Developing new selective heart rate-reducing agents to treat a specific subset of cardiovascular disease patients represents a significant opportunity for further innovation in the field.

Re-purposed drug

Scientists from the Departments of Physiology, Anatomy & Genetics and Pharmacology at the University of Oxford have discovered that a well-known, generic drug (‘drug X’), the safety of which is well documented, acts as a low-dose, heart rate lowering agent by targeting the if current. The initial discovery was made by Dr Rebecca Burton who made a chance observation that drug X induced a reduction in heart rate. Using traditional electrophysiology techniques on isolated sinoatrial node cells the research team of Dr Burton, Professor David Paterson, Professor Derek Terrar, Dr Gil Bubb, Dr Neil Herring and Dr Rebecca Capel have been able to show that drug X acts at very low doses to specifically block the if current, leading to a reduction in heart rate. Further pre-clinical studies funded by an award from the University Challenge Seed Fund which is managed by Isis Innovation using whole atrial preparations and in vivo have confirmed these findings and demonstrated that whilst drug X is a highly effective bradycardic agent it has no apparent effect on blood pressure. These findings suggest that drug X could potentially be of interest in modulation of the If current at appropriate clinical doses for the treatment of a variety of CVDs including systolic heart failure, diastolic heart failure, sinus tachycardia and cardiac syndrome. The well-established safety profile and widespread use of drug X for other indications will greatly facilitate the regulatory route and the scientists are in the process of planning a phase II proof of concept study in patients with mild systolic heart failure as the next step.

Intellectual property

Isis has filed a priority patent application (GB1312386.4 ‘Pharmaceutical Compounds’, 10th July 2013) and the scientific team have compiled a comprehensive pre-clinical data package which will form the basis of translational funding applications and ethical approval for the phase II clinical trial. We would welcome contact from companies who are interested in licensing this technology and developing the next generation of safe, low-dose specific bradycardic agents.

For more information, please contact: Dr Matt Carpenter
+44 (0)1865 280970
Project number: 7438

Similar stories

Drug trial that could improve respiratory recovery from COVID-19 now underway


A clinical trial has commenced this week to test whether a drug called almitrine can help people who are seriously ill with COVID-19 to recover from the disease.

Same genome, different worlds: How a similar brain causes sexually dimorphic behaviours

CNCB Goodwin Group News Publication Research

A new paper from the Goodwin group based in DPAG's Centre for Neural Circuits and Behaviour has shown how males and females are programmed differently in terms of sex.

New form of gift wrap drives male reproductive success

Publication Research Wilson Group News

The transfer of complex mixtures of signals and nutrients between individuals is a key step in several biologically important events in our lives, such as breastfeeding and sexual intercourse. However, we know relatively little about the ways in which the molecular gifts involved are packaged to ensure their successful delivery to the recipient.

Just over half of British Indians would take COVID vaccine

EDI News Outreach Postdoctoral Publication Research Riley Group News

University of Oxford researchers from the Department of Physiology, Anatomy and Genetics (DPAG) and the Department of Psychiatry, in collaboration with The 1928 Institute, have published a major new study on the impact of COVID-19 on the UK’s largest BME population.

Earliest origins of the forming heart identified

Cardiac Theme Postdoctoral Publication Research

The earliest known progenitor of the outermost layer of the heart has been characterised for the first time and linked to the development of other critical cell types in the developing heart in a new paper from the Srinivas group led by BHF Immediate Fellow Dr Richard Tyser.