Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The Domingos lab has published a new opinion piece in Science investigating the implications of a Memorial Sloan Kettering Cancer Center study that lays the foundations for a potential new anti-obesity treatment in the form of targeting adipose tissue-resident macrophages.

Adipose tissue-resident macrophages control lipid storage through production of platelet-derived growth
factor (PDGFcc), which induces lipid retention in white adipose tissue adipocytes in a paracrine manner,
although the precise mechanism is unclear. Recruited macrophages are responsible for the inammation
that characterizes obese adipose tissue. Treatment with PDGFcc antibodies restores homeostasis, and
reduces lipid storage and body weight, redirecting excess lipids mostly to thermogenesis. © Science

Immune cells called adipose tissue-resident macrophages control how much fat is stored in the body by secreting a factor that promotes energy storage in adipocytes, also known as fat cells. A new article from Associate Professor Ana Domingos and BHF Cardiovascular Science DPhil Student Conan O’Brien reviews a new study that attempted to prevent promotion of fat storage. In doing so, they present evidence that an anti-obesity immunotherapy has been identified for the first time.

The study, conducted by Dr Nehemiah Cox and Professor Frederic Geissmann at the Memorial Sloan Kettering Cancer Center in New York, showed that an antibody treatment can inhibit the process of storing fat and cause a reduction in body weight, without affecting food intake. The antibody targets a protein called platelet-derived growth factor c, which is secreted by adipose tissue-resident macrophages. The antibodies bind to the protein and inhibit it from promoting fat storage in adipocytes.

According to O’Brien: “This study introduces a new, macrophage-centred paradigm in energy storage and provides proof of concept for an anti-obesity immunotherapy. It is still unclear the extent to which this finding will be translatable to humans, though single cell RNA sequencing of human adipose tissues tells us that human adipose macrophages also express platelet-derived growth factor c, so we could envision the mechanism being conserved and being a clinically relevant target in the future.”

The full article is available to read in Science: "An anti-obesity immunotherapy?"

Similar stories

Researchers describe how cancer cells can defend themselves from the consequences of certain genetic defects

Swietach Group scientists have identified a rescue mechanism that allows cancers to overcome the consequences of inactivating mutations in critically important genes.

DPAG has two new Professors

Congratulations are in order to Ana Domingos and Nicola Smart who have been awarded the title of Professor in the recent Recognition of Distinction round.

Randy Bruno and Scott Waddell receive Wellcome Discovery Awards

Congratulations are in order for Professors Randy Bruno and Scott Waddell who have each been awarded a prestigious Wellcome Trust Discovery Award to significantly enhance our understanding of higher cognitive functions.

Researchers discover novel form of adaptation in the auditory system

DPAG’s auditory neuroscience researchers have found that the auditory system adapts to the changing acoustics of reverberant environments by temporally shifting the inhibitory tuning of cortical neurons to remove reverberation.

Collaborative team driven by DPAG and Chemistry awarded RSC Horizon Prize

The Molecular Flow Sensor Team, with collaborating members principally from DPAG’s Robbins and Talbot groups and the Department of Chemistry, has been named the winner of the Royal Society of Chemistry’s (RSC) Analytical Division Horizon Prize for the development of a new technology for measuring lung function.