Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

Dr Oliver Stone’s paper “Paraxial mesoderm is the major source of lymphatic endothelium” published in Developmental Cell reveals the earliest known step in the formation of the lymphatic vasculature.

Blood (red) and lymphatic vessels (green) arise from different embryonic sources during development

BHF CRE Intermediate Research Fellow Dr Oliver Stone has published a paper with Dr Didier Stainer that marks a major step in our understanding of how blood and lymphatic vessels are formed.

Dr Stone is primarily interested in understanding how blood and lymphatic vessels are formed during embryonic development, with the ultimate goal of manipulating their function to treat disease. 

The innermost layer of blood and lymphatic vessels is formed by endothelial cells, which are essential for the development and maintenance of all our organs.  Despite their importance, we still know relatively little about how they are specified during embryonic development.

During embryogenesis, endothelial cells initially arise from mesoderm.  These immature endothelial cells subsequently differentiate to form specialised system (artery / vein / lymphatic) and organ (brain / liver / heart / lung) specific vessel beds.  The prevailing view is that following specification from mesoderm, specialisation of endothelial cells is dictated by organ-derived environmental cues.

In this paper, Dr Stone and Dr Stainier show that in addition to local environmental cues, the specialisation of endothelial cells is predetermined by their lineage history.  Using genetic lineage tracing in mice, they show that the majority of lymphatic endothelial cells are derived from a subset of the mesoderm known to give rise to skeletal muscle, tendons and cartilage.  In contrast, this subset of mesoderm makes a limited contribution to the blood vascular endothelium.  By deleting a master regulator of lymphatic endothelial cell differentiation (Prox1), they also show that transition through this lineage is essential for development of the lymphatic vasculature.

Our finding implies that the unique traits of endothelial cells in different vascular beds may be imprinted as they emerge from distinct embryonic lineages. Our ongoing work is investigating the molecular basis of this cellular memory and defining the extent to which lineage history controls endothelial cell heterogeneity in different vascular beds. - Dr Stone

The full paper Paraxial Mesoderm Is the Major Source of Lymphatic Endothelium can be viewed here.

 

Similar stories

New research to radically alter our understanding of synaptic development

Publication Research

A new study from the Molnár group on the role of regulated synaptic vesicular release in specialised synapse formation has made it to the cover of Cerebral Cortex.

Being "in the zone": how waking activity controls sleep need

Publication Research Vyazovskiy Group News

A new study from the Vyazovskiy group suggests that how and where we spend our time while awake impacts how much we need to sleep - it does not only depend on how long we are awake.

New target identified to develop treatment for Abdominal Aortic Aneurysm

Cardiac Theme Publication Research

A new study from the Smart group has shed light on a key regulatory step in the initiation and progression of Abdominal Aortic Aneurysm by revealing the protective role of a previously little known small protein.

Researcher publishes children's book of the brain

Postdoctoral Publication

Betina Ip, a Royal Society Dorothy Hodgkin Research Fellow based in NDCN, formerly a postdoctoral research scientist in DPAG, has written a book for children: The Usborne Book of the Brain and How it Works.

Drug trial that could improve respiratory recovery from COVID-19 now underway

Research

A clinical trial has commenced this week to test whether a drug called almitrine can help people who are seriously ill with COVID-19 to recover from the disease.