Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

The Molnar group, in particular Dr Anna Hoerder-Saubedissen participated in a multinational consortium led by the Allen Institute for Brain Science, Seattle.  Their research focused particularly on the differences in the first generated largely transient neurons in the cerebral cortex, the subplate cells.

 A new atlas of gene expression in the pre- and postnatal primate brain is revealed online this week in Nature. It is hoped that the high-resolution map will shed light, not just on how the brain develops, but also on the processes that underpin neurodevelopmental disorders, such as autism spectrum disorder and schizophrenia.

Ed Lein and colleagues created a high-resolution atlas of rhesus monkey brain development that uncovers, in fine levels of anatomical detail, how gene expression changes across time, from early gestation to young adulthood. The atlas shows that the most dynamic changes happen prenatally then decline in the months after birth, and that cortical areas acquire their adult-like molecular profiles surprisingly late in postnatal development. Genes previously linked to neurodevelopmental disorders are shown to be co-expressed in disease-specific patterns within the developing neocortex.

The study also indicates that human developmental gene expression patterns are more similar to those of monkeys than to those of rodents, with around 9% of genes showing human-specific patterns of gene expression during brain development. This confirms the value of the rhesus monkey as a non-human primate model of human brain development and disease, and of the atlas to help to highlight the unique patterns of gene expression underlying human brain organization. 

The paper can be found here: http://dx.doi.org/10.1038/nature18637

DOI: 10.1038/nature18637

Similar stories

New research to radically alter our understanding of synaptic development

Publication Research

A new study from the Molnár group on the role of regulated synaptic vesicular release in specialised synapse formation has made it to the cover of Cerebral Cortex.

Being "in the zone": how waking activity controls sleep need

Publication Research Vyazovskiy Group News

A new study from the Vyazovskiy group suggests that how and where we spend our time while awake impacts how much we need to sleep - it does not only depend on how long we are awake.

New target identified to develop treatment for Abdominal Aortic Aneurysm

Cardiac Theme Publication Research

A new study from the Smart group has shed light on a key regulatory step in the initiation and progression of Abdominal Aortic Aneurysm by revealing the protective role of a previously little known small protein.

Researcher publishes children's book of the brain

Postdoctoral Publication

Betina Ip, a Royal Society Dorothy Hodgkin Research Fellow based in NDCN, formerly a postdoctoral research scientist in DPAG, has written a book for children: The Usborne Book of the Brain and How it Works.

Drug trial that could improve respiratory recovery from COVID-19 now underway

Research

A clinical trial has commenced this week to test whether a drug called almitrine can help people who are seriously ill with COVID-19 to recover from the disease.