Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

The Molnar group, in particular Dr Anna Hoerder-Saubedissen participated in a multinational consortium led by the Allen Institute for Brain Science, Seattle.  Their research focused particularly on the differences in the first generated largely transient neurons in the cerebral cortex, the subplate cells.

 A new atlas of gene expression in the pre- and postnatal primate brain is revealed online this week in Nature. It is hoped that the high-resolution map will shed light, not just on how the brain develops, but also on the processes that underpin neurodevelopmental disorders, such as autism spectrum disorder and schizophrenia.

Ed Lein and colleagues created a high-resolution atlas of rhesus monkey brain development that uncovers, in fine levels of anatomical detail, how gene expression changes across time, from early gestation to young adulthood. The atlas shows that the most dynamic changes happen prenatally then decline in the months after birth, and that cortical areas acquire their adult-like molecular profiles surprisingly late in postnatal development. Genes previously linked to neurodevelopmental disorders are shown to be co-expressed in disease-specific patterns within the developing neocortex.

The study also indicates that human developmental gene expression patterns are more similar to those of monkeys than to those of rodents, with around 9% of genes showing human-specific patterns of gene expression during brain development. This confirms the value of the rhesus monkey as a non-human primate model of human brain development and disease, and of the atlas to help to highlight the unique patterns of gene expression underlying human brain organization. 

The paper can be found here: http://dx.doi.org/10.1038/nature18637

DOI: 10.1038/nature18637

Similar stories

REF 2021 results

Oxford Parkinson’s Disease Centre awarded £3.8 million to reveal the role of calcium in Parkinson’s

A collaborative research team led by the Oxford Parkinson’s Disease Centre (OPDC) has been awarded a £3.8 million Wellcome Trust Collaborative Award to study the function of calcium in dopamine neurons, and how this is plays a role in Parkinson’s. Their research will help explain how and why dopamine neurons are vulnerable in the disease and look at how they may be preserved.

The effect of nuclear pH on cardiac gene expression

Research led by Dr Alzbeta Hulikova and Professor Pawel Swietach has, for the first time, described the potential regulation of nuclear acid-base chemistry in neonatal and adult cardiomyocytes, and explained its relevance in the context of heart physiology and pathology.

A role of sleep in tinnitus identified for the first time

Phantom percepts, such as subjective tinnitus, are driven by fundamental changes in spontaneous brain activity. Sleep is a natural example of major shifts in spontaneous brain activity and perceptual state, suggesting an interaction between sleep and tinnitus that has so far been little considered. In a new collaborative review article from DPAG’s auditory and sleep neuroscientists, tinnitus and sleep research is brought together for the first time, and, in conclusion, they propose a fundamental relationship between natural brain dynamics and the expression and pathogenesis of tinnitus.

An unexpected role for the cell’s largest membrane network

A new Klemm Lab-led paper has uncovered a new mechanism involving the endoplasmic reticulum that is critical to the organisation and position of the microtubule (MT) cytoskeleton, which ultimately dictates the shape and function of our body’s cells.