Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

During the emergency procedure used to reopen the blocked artery causing a heart attack, smaller "micro" blood vessels can remain constricted causing significant damage. A new study led by Associate Professor Neil Herring and published in the European Heart Journal has established a key cause behind this constriction and identified a potential therapeutic target to block the mechanism behind it.

Cardiovascular disease is the main cause of death in the UK and throughout the Western World. One of the most common ways in which that manifests is through heart attacks, which occurs when one of the heart's arteries is blocked. During a heart attack part of the heart starts to die, which causes pain in the chest and can be life threatening.

Large heart attacks are treated with an emergency procedure to reopen the blocked artery using a balloon and metal tube called a stent. Whilst this procedure is often life saving, in around one third of cases smaller “micro” blood vessels beyond the stent remain constricted causing significant damage. The cause of these micro-vessels being very tightly constricted has so far been unclear.

A new study led by Prof Neil Herring has shed light on why this may happen. Innovative new research has uncovered evidence that the issue relates to the amount of stress the patient experiences during the heart attack. As part of the stress response, a neurotransmitter called Neuropeptide-Y (NPY) is released which causes micro-vessels in the heart to constrict. Furthermore, their data has demonstrated that patients with high NPY levels tend to go on to experience more heart damage. 

To establish these results, the team studied patients who had experienced large heart attacks. They measured the levels of NPY both within the heart and peripheral blood. Alongside this, they took accurate and sophisticated measures of how constricted the small blood vessels were at the time. Through state of the art scans at 48 hours and 6 months after heart attack, researchers were able to see how much damage had been done to the heart. "We were able to correlate quite nicely the levels of NPY in the heart with how constricted the blood vessels were and even how much damage was done to the heart 6 months later" (Prof Herring).

The next step was to understand the mechanism behind how NPY causes this constriction. By studying isolated blood vessels in an animal model, researchers identified a key receptor that NPY binds to to cause the construction. They were then able to compare these results with samples of human hearts taken at the time of surgery, which clearly demonstrated that the receptor is also present in the human heart.

The crucial finding at this stage indicated that drugs that block the NPY receptor can reduce the damage of a heart attack in an experimental model. "That gives us real impetus to say if we can come up with a drug that we can use in humans that can block that receptor, then this may be a really good new treatment that we may be able to give to heart attack patients" (Prof Herring). Further studies are needed to establish whether NPY blocking drugs reduce the damage caused by a heart attack in patients and help improve survival.

The study is in collaboration with the Herring Group, the Oxford Acute Myocardial Infarction (OxAMI) Study led by Professor Keith Channon from the Oxford Heart Centre and the Radcliffe Department of Medicine, and Professor Kim Dora at the Department of Pharmacology. The research was supported by the British Heart Foundation.

The full publication "Neuropeptide-Y causes coronary microvascular constriction and is associated with reduced ejection fraction following ST-elevation myocardial infarction" is available to read in the European Heart Journal.

The interview with Associate Professor Neil Herring is also available to watch with subtitles.

Similar stories

REF 2021 results

DPAG researchers showcased at premier European Society of Cardiology meeting

DPAG scientists across four research groups were highlighted at the major annual European Society of Cardiology basic science conference (FCVB 2022). Congratulations are in order for Dr KC Park on receiving the Young Investigator Award and to Dr Elisabetta Gamen on winning the Moderated Poster Prize.

Oxford Parkinson’s Disease Centre awarded £3.8 million to reveal the role of calcium in Parkinson’s

A collaborative research team led by the Oxford Parkinson’s Disease Centre (OPDC) has been awarded a £3.8 million Wellcome Trust Collaborative Award to study the function of calcium in dopamine neurons, and how this is plays a role in Parkinson’s. Their research will help explain how and why dopamine neurons are vulnerable in the disease and look at how they may be preserved.

The effect of nuclear pH on cardiac gene expression

Research led by Dr Alzbeta Hulikova and Professor Pawel Swietach has, for the first time, described the potential regulation of nuclear acid-base chemistry in neonatal and adult cardiomyocytes, and explained its relevance in the context of heart physiology and pathology.

A role of sleep in tinnitus identified for the first time

Phantom percepts, such as subjective tinnitus, are driven by fundamental changes in spontaneous brain activity. Sleep is a natural example of major shifts in spontaneous brain activity and perceptual state, suggesting an interaction between sleep and tinnitus that has so far been little considered. In a new collaborative review article from DPAG’s auditory and sleep neuroscientists, tinnitus and sleep research is brought together for the first time, and, in conclusion, they propose a fundamental relationship between natural brain dynamics and the expression and pathogenesis of tinnitus.