Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

The earliest known progenitor of the outermost layer of the heart has been characterised for the first time and linked to the development of other critical cell types in the developing heart in a new paper from the Srinivas group led by BHF Immediate Fellow Dr Richard Tyser.

Frontal view of a developing mouse heart used in the study

The heart is the first organ to form during development and is critical for the survival of the embryo. The forming heart is very small, less than half a millimetre in width, and so far the precise molecular identity of the various cell types that make up the heart during these early stages have been poorly defined. However, recent years have seen rapid development in techniques which allow an unbiased assessment of molecular identity at the single cell level. Alongside this, advances in imaging technologies have now allowed researchers to visualise heart formation at high resolution and in real time.

In new research from the Srinivas Group led by Dr Richard Tyser and Dr Ximena Ibarra-Soria, the team combined these cutting-edge technologies to profile the molecular identity and precise locations of cells involved in the formation of the mouse embryonic heart. This allowed them to identify the earliest known progenitor of the epicardium, the outermost layer of the heart and an important source of signals and cells during cardiac development and injury.

Dr Tyser said: “The epicardium is known to have a role in both development and disease, especially following a heart attack when it can generate cells required for repair such as fibroblasts, vascular smooth muscle and cardiomyocytes. This study could be therapeutically applicable at two levels: first, understanding the origins of congenital heart defects and second, providing insight into regenerative strategies to treat heart disease.”

The epicardium forms from a tissue called the proepicardium and the origin of this tissue has been unclear to the research community for some time. Additionally, while the epicardium has been profiled in the past, this has only been done during later stages of embryonic development. In a new paper published in Science, Dr Tyser and Dr Ibarra-Soria’s research marks the first time the cells that give rise to the epicardium have been profiled and anatomically localised. In doing so, the team not only identify a new group of cells that give rise to the proepicardium, thus revealing its origin, but they also show that this group of cells can also directly give rise to a second type of heart cell: cardiomyocytes, which are responsible for enabling the heart to contract and thus pump blood around the body.

According to Dr Tyser: “This study has opened up a number of different lines of research. Having characterised the molecular identity of the different progenitor cell types in the forming heart we will now investigate how these progenitors initially form, their lineage relationship and the role of specific genes, identified in this study, during heart development and disease.”

The research was produced in collaboration with John Marioni (University of Cambridge) and Philipp Keller (HHMI Janelia Research Campus).

The full paper “Characterization of a common progenitor pool of the epicardium and myocardium” is available to read in Science.

Similar stories

Just over half of British Indians would take COVID vaccine

EDI News Outreach Postdoctoral Publication Research Riley Group News

University of Oxford researchers from the Department of Physiology, Anatomy and Genetics (DPAG) and the Department of Psychiatry, in collaboration with The 1928 Institute, have published a major new study on the impact of COVID-19 on the UK’s largest BME population.

Thomas Willis (1621 - 1675) 400th Birthday - Alastair Buchan in conversation with Zoltán Molnár

General Research

Professor Zoltán Molnár talks to Pro-Vice-Chancellor Professor Alastair Buchan to learn more about Thomas Willis's residence and base for scientific discoveries, Beam Hall.

Thomas Willis (1621 - 1675) 400th Birthday - Erica Charters in conversation with Zoltán Molnár

General Research

Professor Zoltán Molnár talks to Dr Erica Charters for a History of Medicine perspective on Oxford physician and Father of Neurology Thomas Willis.

Thomas Willis 400th anniversary trailer

General Research

On 27 January 2021 we celebrate the 400th anniversary of the birth of the greatest neuroanatomist of all time, Thomas Willis. DPAG's Professor Zoltán Molnár has interviewed 8 experts - watch a video preview of what's to come from Monday onwards! With thanks to St John's College.

Covid-19 lung damage identified in study

Postdoctoral Research

In a new study into the longer-term damage amongst patients recovering from COVID-19, DPAG Research Fellow Dr James Grist of the Tyler Lab has been running a novel scanning technique that shows a dramatic decrease in the ability of the lungs to diffuse gas in to the blood stream after COVID infection. This work may shed light on the problem of breathlessness after COVID infection and help guide us in understanding therapeutic selection and efficacy.

A clue to how a memory-enhancing pill might work

CNCB Publication Research

Hundreds of dietary supplements have been reported to improve cognitive and emotional function in humans, but few have scientific foundation. A new study from the Waddell group provides fresh insight into how dietary Magnesium supplementation can influence memory performance.