Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Dr Duncan Sparrow has published a new paper in collaboration with the Victor Chang Cardiac Research Institute entitled "Gene-environment interaction impacts on heart development and embryo survival."

Duncan Sparrow.jpg

 

Congenital heart disease (CHD) is a heart defect that a baby is born with. It is the most common type of birth defect, affecting 1 in 100 babies worldwide, with about 12 affected babies born each day in the UK. Untreated, more than half of these will die. Such defects occur because something goes wrong as the baby’s heart forms in the womb. This can be because of faulty genes inherited from the parents, or it can be caused by environmental factors affecting the mother during pregnancy.

Most research in this area over the past 20 years has focused on understanding the genetic causes of CHD. However, even though the latest genome sequencing technologies have identified mutations in over 100 genes that can cause CHD, still only 20-30% of cases can be explained genetics alone.

Scientists at the Victor Chang Cardiac Research Institute in Sydney, Australia and DPAG's Duncan Sparrow have been studying how environmental factors might exacerbate the effects of genetic mutations to cause CHD. They have now shown that during normal pregnancy, mouse embryos lacking one copy of a gene associated with human CHD are completely normal, but when they are exposed to reduced oxygen levels in utero, their hearts form abnormally. This causes reduced heart rates and the sudden death of the embryos. They show that this is due to a normal cellular response to low oxygen levels acting pathologically to switch off the function of the remaining copy of the CHD-associated gene.

This work, partly funded by two British Heart Foundation grants, provides new evidence that some cases of CHD may be caused by the combination of genetic and environmental factors that each by itself does not cause a birth defect, but only do so when combined. This research may be applicable to prospective mothers with a family history of CHD, suggesting that it would be advisable for them to avoid known environmental risk factors for CHD.

Read the full paper published in Development here.

A summary is also available in the journal's "research highlights" section.

Similar stories

New blood test from DPAG cardiac researchers could save lives of heart attack victims

Researchers from the Herring group have developed a blood test that measures stress hormone levels after heart attacks. The test – costing just £10 – could ensure patients receive timely life-saving treatment.

Mootaz Salman set to target new treatments for stroke

The Chief Scientist Office of the Government of Scotland has awarded a collaborative grant of £298,966 to Dr Mootaz Salman to seek new therapeutic avenues to treat stroke.

New BBSRC grant to further our insights into how the cortex controls sleep

Professor of Sleep Physiology Vladyslav Vyazovskiy and Professor of Developmental Neuroscience Zoltán Molnár have been awarded a Project Grant from the Biotechnology and Biological Sciences Research Council (BBSRC) for “Brain mechanisms of sleep: top-down or bottom-up?”

Raised intracellular chloride levels underlie the effects of tiredness in cortex

A new study, co-authored by Professor Vladyslav Vyazovskiy, published in Nature Neuroscience, has revealed that intracellular chloride levels within cortical pyramidal neurons reflect sleep–wake history.

Strong performance for DPAG cardiac research at the Oxford BHF CRE Annual Symposium

Congratulations are in order for Kaitlyn Dennis, Dr Ni Li and Dr KC Park on their awards at this year's major showcase for Oxford's British Heart Foundation funded researchers.