Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

Dr Duncan Sparrow has published a new paper in collaboration with the Victor Chang Cardiac Research Institute entitled "Gene-environment interaction impacts on heart development and embryo survival."

Duncan Sparrow.jpg

 

Congenital heart disease (CHD) is a heart defect that a baby is born with. It is the most common type of birth defect, affecting 1 in 100 babies worldwide, with about 12 affected babies born each day in the UK. Untreated, more than half of these will die. Such defects occur because something goes wrong as the baby’s heart forms in the womb. This can be because of faulty genes inherited from the parents, or it can be caused by environmental factors affecting the mother during pregnancy.

Most research in this area over the past 20 years has focused on understanding the genetic causes of CHD. However, even though the latest genome sequencing technologies have identified mutations in over 100 genes that can cause CHD, still only 20-30% of cases can be explained genetics alone.

Scientists at the Victor Chang Cardiac Research Institute in Sydney, Australia and DPAG's Duncan Sparrow have been studying how environmental factors might exacerbate the effects of genetic mutations to cause CHD. They have now shown that during normal pregnancy, mouse embryos lacking one copy of a gene associated with human CHD are completely normal, but when they are exposed to reduced oxygen levels in utero, their hearts form abnormally. This causes reduced heart rates and the sudden death of the embryos. They show that this is due to a normal cellular response to low oxygen levels acting pathologically to switch off the function of the remaining copy of the CHD-associated gene.

This work, partly funded by two British Heart Foundation grants, provides new evidence that some cases of CHD may be caused by the combination of genetic and environmental factors that each by itself does not cause a birth defect, but only do so when combined. This research may be applicable to prospective mothers with a family history of CHD, suggesting that it would be advisable for them to avoid known environmental risk factors for CHD.

Read the full paper published in Development here.

A summary is also available in the journal's "research highlights" section.

Similar stories

Blood bank storage can reduce ability of transfusions to treat anaemia

New research from the Swietach Group in collaboration with NHS Blood and Transplant has demonstrated that the process of storing blood in blood banks can negatively impact the function of red blood cells and consequently may reduce the effectiveness of blood transfusions, a treatment commonly used to combat anaemia.

Overlapping second messengers increase dynamic control of physiological responses

New research from the Parekh and Zaccolo groups reveals that a prototypical anchoring protein, known to be responsible for regulating several important physiological processes, also orchestrates the formation of two important universal second messengers.

Feeling tired? Here’s how the brain’s ‘hourglass’ controls your need for sleep – new research

New article on The Conversation website written by Dr Lukas Krone, Associate Professor Vladyslav Vyazovskiy and Professor Zoltán Molnár.

Scientists Decipher How NeuroImmune Interactions Burn Deep Fat

A pioneering collaborative mouse study from an international team of researchers including DPAG's Associate Professor Ana Domingos published in Nature offers new therapeutic avenues for reducing visceral fat stores, which have been associated with cardiovascular disease and multiple types of cancer.

Study set to detect hidden lung damage in Long Covid Patients

Following the successful identification of long-term previously invisible lung damage in post-Covid patients, a large NIHR grant will enable a University of Oxford team including DPAG's Dr James Grist to continue this crucial work to shed light on why people with confirmed Long Covid continue to experience breathlessness following recovery from Covid-19.