Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

DPAG's Associate Professor Mathilda Mommersteeg and Professor Paul Riley, in collaboration with Professor Robin Choudhury from the Radcliffe Department of Medicine, will perform single cell analysis of inflammation during heart regeneration with a grant from the Chan Zuckerberg Initiative.

L-R: Prof Robin Choudhury, Prof Mathilda Mommersteeg and Prof Paul Riley

Cardiovascular disease is the leading cause of death worldwide, with a major contribution from myocardial infarction (MI), also known as a heart attack. Inflammation and ensuing fibrotic scarring on the heart are critical determinants of outcome post heart attack. 

A key, but elusive, therapeutic goal for scientists is to modulate inflammation and scarring, while enhancing normal healing. The cardiac scar that forms in the human heart after heart attack is permanent, so the heart is not able to pump as efficiently as before injury, eventually leading to heart failure. However, remarkably, some fish and neonatal mice do not scar after injury, but instead regenerate functional heart tissue. Inflammatory cells are essential for this regeneration, though their precise role is not understood. 

DPAG's Associate Professor Mathilda Mommersteeg and Professor Paul Riley, together with Professor Robin Choudhury from the Radcliffe Department of Medicine, have received funding from the Chan Zuckerberg Foundation to study the role of inflammatory cells in regenerative versus non-regenerative models post-myocardial infarction using single cell RNA sequencing (SC-Seq) and computational biology.

This grant is part of a new Initiative supporting 29 interdisciplinary teams to build a network of researchers exploring emerging ideas on the role of inflammation in disease. The teams will carry out two-year pilot projects focused on tissue-level inflammatory processes in diverse tissues and disease states.

Head of Science at the Chan Zuckerberg Initiative (CZI) Cori Bargmann said: "Knowing more about inflammation at the level of affected cells and tissues will increase our understanding of many diseases and improve our ability to cure, prevent, or manage them."

More information on the CZI and its funded projects can be found here.

Similar stories

Cortex may regulate the need for sleep

Why we sleep, and the processes behind sleep, are amongst the most interesting questions in modern neuroscience. Researchers at the University of Oxford, including DPAG's Molnár and Vyazovskiy group scientists, have now uncovered a new target for sleep investigations within the mammalian brain – the cerebral cortex. The paper, first authored by Dr Lukas Krone, was published today in Nature Neuroscience.

Reducing fat in the diabetic heart could improve recovery from heart attack

New research from the Heather Group has shown that in type 2 diabetes an overload of lipids reduces the heart’s ability to generate energy during a heart attack, decreasing chances of recovery.

The brain’s one-sided teaching signals

A new study by the Lak group reveals a novel facet of dopamine signalling during visual decision making.

Fellowship awarded to Huriye Atilgan to enhance our understanding of value-based decision-making

Congratulations are in order for Postdoctoral Research Scientist Dr Huriye Atilgan who has been awarded a prestigious Sir Henry Wellcome Postdoctoral Fellowship funded by the Wellcome Trust.

The future of stroke treatment

A team of international collaborators including DPAG's Dr Mootaz Salman has been researching a promising new therapeutic for the treatment of strokes and other brain injuries.