Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

DPAG's Associate Professor Mathilda Mommersteeg and Professor Paul Riley, in collaboration with Professor Robin Choudhury from the Radcliffe Department of Medicine, will perform single cell analysis of inflammation during heart regeneration with a grant from the Chan Zuckerberg Initiative.

L-R: Prof Robin Choudhury, Prof Mathilda Mommersteeg and Prof Paul Riley

Cardiovascular disease is the leading cause of death worldwide, with a major contribution from myocardial infarction (MI), also known as a heart attack. Inflammation and ensuing fibrotic scarring on the heart are critical determinants of outcome post heart attack. 

A key, but elusive, therapeutic goal for scientists is to modulate inflammation and scarring, while enhancing normal healing. The cardiac scar that forms in the human heart after heart attack is permanent, so the heart is not able to pump as efficiently as before injury, eventually leading to heart failure. However, remarkably, some fish and neonatal mice do not scar after injury, but instead regenerate functional heart tissue. Inflammatory cells are essential for this regeneration, though their precise role is not understood. 

DPAG's Associate Professor Mathilda Mommersteeg and Professor Paul Riley, together with Professor Robin Choudhury from the Radcliffe Department of Medicine, have received funding from the Chan Zuckerberg Foundation to study the role of inflammatory cells in regenerative versus non-regenerative models post-myocardial infarction using single cell RNA sequencing (SC-Seq) and computational biology.

This grant is part of a new Initiative supporting 29 interdisciplinary teams to build a network of researchers exploring emerging ideas on the role of inflammation in disease. The teams will carry out two-year pilot projects focused on tissue-level inflammatory processes in diverse tissues and disease states.

Head of Science at the Chan Zuckerberg Initiative (CZI) Cori Bargmann said: "Knowing more about inflammation at the level of affected cells and tissues will increase our understanding of many diseases and improve our ability to cure, prevent, or manage them."

More information on the CZI and its funded projects can be found here.

Similar stories

Winners of DPAG Image Competition announced

A department-wide image competition has yielded a range of stunning images showcasing the diversity and breadth of DPAG's science. Three prize winners and eight commended pictures are announced.

Christoph Treiber awarded ERC Starting Grant to investigate the origins of behavioural diversity

Congratulations are in order for postdoctoral research scientist Dr Christoph Treiber who has been awarded a Starting Grant from the European Research Council. His funded project will investigate the genetic components that may contribute to diversity of brain function and behaviour.

Switch with a spring: a new model for sleep regulation

New collaborative research led by the Vyazovskiy Group has shed new light on the role of the hypothalamus in the transition between sleep and wake states.

Winners of the DPAG Student Poster Day 2021 announced

"A Year of Progress" was held in the Sherrington Library and Sherrington PCR Café on Thursday 18 November 2021.

Oxford-led research maps milestone stage of human development for the first time

Scientists have shed light on an important stage of early embryonic development that has never been fully mapped out in humans before.