Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Point-of-care (PoC) testing is vital for managing disease outbreaks and improving healthcare access, especially in low- to middle-income countries (LMICs) where disease prevalence is high and resources are scarce. Traditional molecular diagnostics, such as PCR, require specialized equipment and skilled personnel, making them impractical for PoC settings in resource-limited areas. This project aims to advance PoC diagnostics by integrating platinum nanocatalysts (Pt@Au) into paper-based lateral flow assays (LFAs). These enhanced LFAs offer superior detection limits compared to conventional tests and provide colorimetric results that minimize user error. Additionally, they can incorporate a barcode-style system for multiplexed detection, enabling differential diagnosis across multiple diseases. The project focuses on developing next-generation multiplexed LFAs that can detect both nucleic acids and proteins simultaneously with high sensitivity. By enabling the simultaneous detection of multiple biomarkers in a single test, this project seeks to improve disease management and public health outcomes in LMICs, offering a practical and effective tool for comprehensive diagnostics in challenging settings.