Mootaz Salman - Neuroscience - 'Advanced 3D brain-on-a-chip platforms to study molecular mechanisms of neurodegeneration'
The brain microenvironment is tightly regulated by the blood–brain barrier (BBB) which maintains the central nervous system internal milieu. BBB leakage following neuroinflammation (or systemic inflammation) has recently been described early in the occurrence and development of neurodegenerative disorders including Parkinson’s, Alzheimer's, and cerebral small vessel disease. Dynamic 3D models of the BBB represent a major advance on traditional static 2D models allowing cells to be in a physiologically realistic native-like 3D environment that faithfully recapitulate the complexity of an in vivo system without artificial support membranes. We seek highly motivated DPhil students with either a scientific or medical background to join our group to work on the molecular mechanisms of BBB (dys)function in neurodegeneration. In this project, you will combine the use of patient-derived induced pluripotent stem cells (iPSCs) together with novel brain-on-a-chip platforms, advanced microscopy, microfluidics, and molecular assays. This project will advance our ability to understand how does inflammation-mediated BBB dysfunction lead to the development of neurodegeneration and dementia. It will establish a framework to address fundamental questions about the role of the BBB in health and neurodegeneration.