Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The Waddell Group's paper "Re-evaluation of learned information in Drosophila" has been published in Nature.

A recent study from the Waddell Group, published in Nature, reveals how the strength of memory-directed behavior is either suppressed or maintained depending on whether a new experience opposes or fits a previously learned expectation.


Different dopaminergic neurons in the Drosophila brain work in support or opposition to a previous memory of food reward and so allow the fly to accumulate information from all experiences to optimise behaviour.

Read more here

Similar stories

Key cause of type 2 diabetes uncovered

Research led by Dr Elizabeth Haythorne and Professor Frances Ashcroft reveals high blood glucose reprograms the metabolism of pancreatic beta-cells in diabetes. They have discovered that glucose metabolites, rather than glucose itself, are key to the progression of type 2 diabetes. Glucose metabolites damage pancreatic beta-cell function, so they are unable to release enough of the hormone insulin. Reducing the rate at which glucose is metabolised, and these glucose metabolites build up, can prevent the effects of hyperglycaemia.

Winners of the DPAG Student Poster Day 2022 announced

"A Year of Progress" was held in the Sherrington Library on Wednesday 9 November 2022.

New study shows clinical symptoms for Alzheimer’s can be predicted in preclinical models

Establishing preclinical models of Alzheimer’s that reflect in-life clinical symptoms of each individual is a critically important goal, yet so far it has not been fully realised. A new collaborative study from the University of Oxford has demonstrated that clinical vulnerability to an abnormally abundant protein in Alzheimer’s brain is in fact reflected in individual patient induced pluripotent stem cell-derived cortical neurons.

Updating the circuit maps of the sympathetic neural network

A new review from Professor Ana Domingos’ lab and colleagues offers a fresh modern viewpoint on sympathetic neurons and their relation to immune cells and obesity.

New Pfizer grant paves the way to a better understanding of how body fat is controlled

Professor Ana Domingos has been awarded a highly competitive independent research grant from Pfizer to discover ‘the role of Sympathetic-associated Perineurial barrier Cells in obesity’.