Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

Dr Pulak Kar, Professor Anant Parekh and colleagues are a step closer to understanding how specificity is achieved in the immune system.

Of the thousands of chemical signals that land on a cell’s surface each day, only a handful of intracellular messengers are used to produce a physiological effect. Amongst the small number of signals employed, intracellular calcium is the most widespread, activating a range of important responses including neurotransmission, beating of the heart, energy production and cell growth. However, with the same message capable of activating so many different processes comes the question of specificity: how does a cell know what to do when the intracellular calcium levels rise? Dr Pulak Kar, Professor Anant Parekh and colleagues are a step closer to understanding how specificity is achieved in the immune system. The team’s research in Current Biology (24, 1361-1368) show that a protein signalling complex forms at the cell periphery close to a calcium channel called the CRAC channel that lets calcium ions enter the cell. As the calcium enters, its target is immediately and selectively activated. This mechanism explains how different ways of increasing calcium activates different cellular responses. The results also reveal that targeting the CRAC channel therapeutically should be an effective approach to control the severity of an immune response.

Similar stories

The brain’s one-sided teaching signals

A new study by the Lak group reveals a novel facet of dopamine signalling during visual decision making.

Fellowship awarded to Huriye Atilgan to enhance our understanding of value-based decision-making

Congratulations are in order for Postdoctoral Research Scientist Dr Huriye Atilgan who has been awarded a prestigious Sir Henry Wellcome Postdoctoral Fellowship funded by the Wellcome Trust.

The future of stroke treatment

A team of international collaborators including DPAG's Dr Mootaz Salman has been researching a promising new therapeutic for the treatment of strokes and other brain injuries.

New review reveals proof of concept for an anti-obesity immunotherapy

The Domingos lab has published a new opinion piece in Science investigating the implications of a Memorial Sloan Kettering Cancer Center study that lays the foundations for a potential new anti-obesity treatment in the form of targeting adipose tissue-resident macrophages.

New pathway established for multisensory cortical communication

Integration of information across the senses is critical for perception. This activity is thought to arise primarily from connections made in the brain's sensory cortical areas. A new paper from the King Group uncovers evidence for the first time on the little understood role of subcortical circuits in shaping the multisensory properties of primary cortical neurons.