Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

Dr Pulak Kar, Professor Anant Parekh and colleagues are a step closer to understanding how specificity is achieved in the immune system.

Of the thousands of chemical signals that land on a cell’s surface each day, only a handful of intracellular messengers are used to produce a physiological effect. Amongst the small number of signals employed, intracellular calcium is the most widespread, activating a range of important responses including neurotransmission, beating of the heart, energy production and cell growth. However, with the same message capable of activating so many different processes comes the question of specificity: how does a cell know what to do when the intracellular calcium levels rise? Dr Pulak Kar, Professor Anant Parekh and colleagues are a step closer to understanding how specificity is achieved in the immune system. The team’s research in Current Biology (24, 1361-1368) show that a protein signalling complex forms at the cell periphery close to a calcium channel called the CRAC channel that lets calcium ions enter the cell. As the calcium enters, its target is immediately and selectively activated. This mechanism explains how different ways of increasing calcium activates different cellular responses. The results also reveal that targeting the CRAC channel therapeutically should be an effective approach to control the severity of an immune response.

Similar stories

REF 2021 results

Oxford Parkinson’s Disease Centre awarded £3.8 million to reveal the role of calcium in Parkinson’s

A collaborative research team led by the Oxford Parkinson’s Disease Centre (OPDC) has been awarded a £3.8 million Wellcome Trust Collaborative Award to study the function of calcium in dopamine neurons, and how this is plays a role in Parkinson’s. Their research will help explain how and why dopamine neurons are vulnerable in the disease and look at how they may be preserved.

The effect of nuclear pH on cardiac gene expression

Research led by Dr Alzbeta Hulikova and Professor Pawel Swietach has, for the first time, described the potential regulation of nuclear acid-base chemistry in neonatal and adult cardiomyocytes, and explained its relevance in the context of heart physiology and pathology.

A role of sleep in tinnitus identified for the first time

Phantom percepts, such as subjective tinnitus, are driven by fundamental changes in spontaneous brain activity. Sleep is a natural example of major shifts in spontaneous brain activity and perceptual state, suggesting an interaction between sleep and tinnitus that has so far been little considered. In a new collaborative review article from DPAG’s auditory and sleep neuroscientists, tinnitus and sleep research is brought together for the first time, and, in conclusion, they propose a fundamental relationship between natural brain dynamics and the expression and pathogenesis of tinnitus.

An unexpected role for the cell’s largest membrane network

A new Klemm Lab-led paper has uncovered a new mechanism involving the endoplasmic reticulum that is critical to the organisation and position of the microtubule (MT) cytoskeleton, which ultimately dictates the shape and function of our body’s cells.