Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

Dr Pulak Kar, Professor Anant Parekh and colleagues are a step closer to understanding how specificity is achieved in the immune system.

Of the thousands of chemical signals that land on a cell’s surface each day, only a handful of intracellular messengers are used to produce a physiological effect. Amongst the small number of signals employed, intracellular calcium is the most widespread, activating a range of important responses including neurotransmission, beating of the heart, energy production and cell growth. However, with the same message capable of activating so many different processes comes the question of specificity: how does a cell know what to do when the intracellular calcium levels rise? Dr Pulak Kar, Professor Anant Parekh and colleagues are a step closer to understanding how specificity is achieved in the immune system. The team’s research in Current Biology (24, 1361-1368) show that a protein signalling complex forms at the cell periphery close to a calcium channel called the CRAC channel that lets calcium ions enter the cell. As the calcium enters, its target is immediately and selectively activated. This mechanism explains how different ways of increasing calcium activates different cellular responses. The results also reveal that targeting the CRAC channel therapeutically should be an effective approach to control the severity of an immune response.

Similar stories

Just over half of British Indians would take COVID vaccine

EDI News Outreach Postdoctoral Publication Research Riley Group News

University of Oxford researchers from the Department of Physiology, Anatomy and Genetics (DPAG) and the Department of Psychiatry, in collaboration with The 1928 Institute, have published a major new study on the impact of COVID-19 on the UK’s largest BME population.

Thomas Willis (1621 - 1675) 400th Birthday - Alastair Buchan in conversation with Zoltán Molnár

General Research

Professor Zoltán Molnár talks to Pro-Vice-Chancellor Professor Alastair Buchan to learn more about Thomas Willis's residence and base for scientific discoveries, Beam Hall.

Thomas Willis (1621 - 1675) 400th Birthday - Erica Charters in conversation with Zoltán Molnár

General Research

Professor Zoltán Molnár talks to Dr Erica Charters for a History of Medicine perspective on Oxford physician and Father of Neurology Thomas Willis.

Thomas Willis 400th anniversary trailer

General Research

On 27 January 2021 we celebrate the 400th anniversary of the birth of the greatest neuroanatomist of all time, Thomas Willis. DPAG's Professor Zoltán Molnár has interviewed 8 experts - watch a video preview of what's to come from Monday onwards! With thanks to St John's College.

Earliest origins of the forming heart identified

Cardiac Theme Postdoctoral Publication Research

The earliest known progenitor of the outermost layer of the heart has been characterised for the first time and linked to the development of other critical cell types in the developing heart in a new paper from the Srinivas group led by BHF Immediate Fellow Dr Richard Tyser.

Covid-19 lung damage identified in study

Postdoctoral Research

In a new study into the longer-term damage amongst patients recovering from COVID-19, DPAG Research Fellow Dr James Grist of the Tyler Lab has been running a novel scanning technique that shows a dramatic decrease in the ability of the lungs to diffuse gas in to the blood stream after COVID infection. This work may shed light on the problem of breathlessness after COVID infection and help guide us in understanding therapeutic selection and efficacy.