Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Researchers in the Department of Physiology, Anatomy and Genetics establish a link between talking to neighbours and an increase in gene expression in a paper published in the prestigious journal Cell Reports.

In polarized cells or cells with complex geometry, clustering of plasma membrane proteins is an effective mechanism for eliciting spatially restricted signals. However, protein clustering is also seen in cells with relatively simple topology, suggesting it fulfils a more fundamental role in cell biology than simply orchestrating compartmentalised responses. In a paper* recently published, DPAG researchers Krishna Samanta, Pulak Kar and Anant Parekh and Gary Mirams from Computer Science have compared the ability of clustered store-operated calcium channels with a similar number of dispersed calcium channels to activate transcription factors which subsequently increase nuclear gene expression. For identical levels of channel activity, they found that clustering was considerably more effective in stimulating gene expression. The new results identify a long-range signalling advantage to the tight evolutionary conservation of channel clustering and reveal that calcium channel aggregation increases strength, fidelity and reliability to the general process of excitation-transcription coupling. 

 

* Ca2+ channel re-localization to plasma membrane microdomains strengthens activation of Ca2+-dependent nuclear gene expression, Cell Reports, volume 13, issue 2

More information can be found on the Cell Reports website.

Similar stories

Mootaz Salman set to target new treatments for stroke

The Chief Scientist Office of the Government of Scotland has awarded a collaborative grant of £298,966 to Dr Mootaz Salman to seek new therapeutic avenues to treat stroke.

New BBSRC grant to further our insights into how the cortex controls sleep

Professor of Sleep Physiology Vladyslav Vyazovskiy and Professor of Developmental Neuroscience Zoltán Molnár have been awarded a Project Grant from the Biotechnology and Biological Sciences Research Council (BBSRC) for “Brain mechanisms of sleep: top-down or bottom-up?”

Raised intracellular chloride levels underlie the effects of tiredness in cortex

A new study, co-authored by Professor Vladyslav Vyazovskiy, published in Nature Neuroscience, has revealed that intracellular chloride levels within cortical pyramidal neurons reflect sleep–wake history.

Key cause of type 2 diabetes uncovered

Research led by Dr Elizabeth Haythorne and Professor Frances Ashcroft reveals high blood glucose reprograms the metabolism of pancreatic beta-cells in diabetes. They have discovered that glucose metabolites, rather than glucose itself, are key to the progression of type 2 diabetes. Glucose metabolites damage pancreatic beta-cell function, so they are unable to release enough of the hormone insulin. Reducing the rate at which glucose is metabolised, and these glucose metabolites build up, can prevent the effects of hyperglycaemia.

New study shows clinical symptoms for Alzheimer’s can be predicted in preclinical models

Establishing preclinical models of Alzheimer’s that reflect in-life clinical symptoms of each individual is a critically important goal, yet so far it has not been fully realised. A new collaborative study from the University of Oxford has demonstrated that clinical vulnerability to an abnormally abundant protein in Alzheimer’s brain is in fact reflected in individual patient induced pluripotent stem cell-derived cortical neurons.