Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

The Miesenböck Group have discovered a brain process common to sleep and ageing in research that could pave the way for new treatments for insomnia.

Writing in the journal Nature, the Miesenböck team report how oxidative stress leads to sleep. Oxidative stress is also believed to be a reason why we age and a cause of degenerative diseases.

The researchers say the discovery brings us closer to understanding the still-mysterious function of sleep and offers new hope for the treatment of sleep disorders. It may also explain why, as is suspected, chronic lack of sleep shortens life.

Professor Gero Miesenböck, Director of Oxford University’s Centre for Neural Circuits and Behaviour, who led the Oxford team, said: ‘It’s no accident that oxygen tanks carry explosion hazard labels: uncontrolled combustion is dangerous. Animals, including humans, face a similar risk when they use the oxygen they breathe to convert food into energy: imperfectly contained combustion leads to “oxidative stress” in the cell. This is believed to be a cause of ageing and a culprit for the degenerative diseases that blight our later years. Our new research shows that oxidative stress also activates the neurons that control whether we go to sleep.’

More information is available on the University of Oxford website and the CNCB website.

The full paper, 'A potassium channel β-subunit couples mitochondrial electron transport to sleep', can be viewed here

Similar stories

Just over half of British Indians would take COVID vaccine

EDI News Outreach Postdoctoral Publication Research Riley Group News

University of Oxford researchers from the Department of Physiology, Anatomy and Genetics (DPAG) and the Department of Psychiatry, in collaboration with The 1928 Institute, have published a major new study on the impact of COVID-19 on the UK’s largest BME population.

Thomas Willis (1621 - 1675) 400th Birthday - Alastair Buchan in conversation with Zoltán Molnár

General Research

Professor Zoltán Molnár talks to Pro-Vice-Chancellor Professor Alastair Buchan to learn more about Thomas Willis's residence and base for scientific discoveries, Beam Hall.

Thomas Willis (1621 - 1675) 400th Birthday - Erica Charters in conversation with Zoltán Molnár

General Research

Professor Zoltán Molnár talks to Dr Erica Charters for a History of Medicine perspective on Oxford physician and Father of Neurology Thomas Willis.

Thomas Willis 400th anniversary trailer

General Research

On 27 January 2021 we celebrate the 400th anniversary of the birth of the greatest neuroanatomist of all time, Thomas Willis. DPAG's Professor Zoltán Molnár has interviewed 8 experts - watch a video preview of what's to come from Monday onwards! With thanks to St John's College.

Earliest origins of the forming heart identified

Cardiac Theme Postdoctoral Publication Research

The earliest known progenitor of the outermost layer of the heart has been characterised for the first time and linked to the development of other critical cell types in the developing heart in a new paper from the Srinivas group led by BHF Immediate Fellow Dr Richard Tyser.

Covid-19 lung damage identified in study

Postdoctoral Research

In a new study into the longer-term damage amongst patients recovering from COVID-19, DPAG Research Fellow Dr James Grist of the Tyler Lab has been running a novel scanning technique that shows a dramatic decrease in the ability of the lungs to diffuse gas in to the blood stream after COVID infection. This work may shed light on the problem of breathlessness after COVID infection and help guide us in understanding therapeutic selection and efficacy.