Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

Congratulations are in order for Professor Andy King's lab, who just this week have had a paper published in eLife, a high impact journal, titled Sensory cortex is optimised for prediction of future input

Yosef Singer, a graduate student in the group, was the first author on the paper, and Nicol Harper, a Senior Postdoctoral Research Scientist in the lab, was the senior author on the paper and day-to-day supervisor. Yayoi Teramoto, Ben Willmore, Jan Schnupp, and Andy King were also authors on the publication. 

A large part of the brain is devoted to processing sensory input. This processing allows us to tell, for example, if the image we see is of a cat or a dog, or the sound we hear is a bark or a meow. Neurons respond to sensory input by generating spikes of activity. For example, in primary visual cortex, each neuron typically responds best to an edge-like structure moving before the eyes with a particular location, orientation, speed and direction of motion. In primary auditory cortex, each neuron typically responds best to changes in the loudness of sounds over a particular range of sound frequencies.

The King Group sought to understand the neural code used by primary sensory cortex -- why neurons respond to the particular set of stimulus features that they do. For example, why do visual neurons prefer moving oriented edges rather than say rotating hexagons, and why do auditory neurons prefer sounds that change in loudness or frequency composition over time rather than steady unchanging sounds? A dominant hypothesis, which can explain much of the behaviour of sensory neurons, is that neural codes are optimised to be sparse -- in other words to minimise the number of spikes required to represent stimuli. They show that a simple alternative principle may explain the code used by the sensory brain -- namely, that neurons use the code that most efficiently allows prediction of future input. This would make sense since features in the world that are predictive of the future will be informative for guiding future actions.

To do this, they simulated networks of neurons in a computer. The group optimised the connection strengths of these neurons so that they efficiently predicted the immediate future of videos of natural scenes from their past. They then examined the preferred stimuli of the simulated neurons. These turned out to be moving, oriented edges, just as in the real primary visual cortex of mammals. King's lab also optimised the same simulated network to predict the immediate future of recordings of natural sounds from their past.  The resulting auditory stimuli preferred by the neurons also closely matched those preferred by neurons in the real primary auditory cortex. In particular, for both vision and audition, the temporal structure of these preferred stimuli was similar to that found for real neurons -- which is not the case for other principled models such as sparse coding.

The group's results suggest that coding for efficient prediction of the future may be a general principle behind the way the brain represents the sensory world. Disorders of sensory processing are unfortunately all too common, and a better understanding of the computational principles underlying sensory processing should help us to interpret what goes wrong in the brain and why. Temporal prediction may also be relevant to machine learning and artificial intelligence applications, providing a simple method by which smart devices might be trained to process sensory inputs.


You can read the full paper here.

Similar stories

Researchers discover novel form of adaptation in the auditory system

DPAG’s auditory neuroscience researchers have found that the auditory system adapts to the changing acoustics of reverberant environments by temporally shifting the inhibitory tuning of cortical neurons to remove reverberation.

Collaborative team driven by DPAG and Chemistry awarded RSC Horizon Prize

The Molecular Flow Sensor Team, with collaborating members principally from DPAG’s Robbins and Talbot groups and the Department of Chemistry, has been named the winner of the Royal Society of Chemistry’s (RSC) Analytical Division Horizon Prize for the development of a new technology for measuring lung function.

Randy Bruno named Academy of Medical Sciences Professor

Congratulations are in order for Professor Randy Bruno, who has been awarded an AMS Professorship. The AMS Professorship Scheme provides a package of support to biomedical and healthcare researchers taking up a full Professorship in the UK.

REF 2021 results

DPAG researchers showcased at premier European Society of Cardiology meeting

DPAG scientists across four research groups were highlighted at the major annual European Society of Cardiology basic science conference (FCVB 2022). Congratulations are in order for Dr KC Park on receiving the Young Investigator Award and to Dr Elisabetta Gamen on winning the Moderated Poster Prize.