Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Prof Sarah De Val in collaboration with Dr Gillian Douglas from the Radcliffe Department of Medicine has received a grant from the John Fell Fund to support their work investigating the behaviour of different endothelial regulatory pathways during disorders of the cardiovascular system.

Sarah De Val.jpg

 

Endothelial cells (EC) form the inner lining of blood vessels and are essential for their function and homeostasis. Endothelial cells are highly heterogenous and can therefore behave very differently depending on the local environment. These differences are essential to form new blood vessels in areas of need, to adapt vessels to changes in the local environment, and to create and maintain different branches of the vasculature, which includes arteries and veins.

Identifying how these ECs behave in different situations is vitally important to understanding how the body attempts to repair itself after injury through the formation of new blood vessels, what can go wrong and how we can try to manipulate the behaviour of ECs to facilitate repair.

Associate Professor Sarah De Val’s lab aims to identify and describe the regulatory pathways responsible for controlling different aspects of EC behaviour. The team's recent research has characterised multiple independent regulatory pathways, and in order to do this, they have generated a number of novel enhancers: reporter transgenic mouse lines.

“With Prof Nicola Smart, we have already successfully used these transgenic models to investigate the regulatory pathways controlling different types of vessel growth in the heart, uncovering unexpected differences between the pathways involved in development, quiescence and response to injury” (Prof De Val). These findings could hold the key to understanding exactly how these pathways operate when the heart is damaged.

Prof De Val, in a close collaboration with Dr Gillian Douglas from the Radcliffe Department of Medicine, has now been awarded a £50,000 grant from the University of Oxford’s John Fell Fund to allow her to expand this investigation of EC regulatory pathways into different cardiovascular disease states.To do so, they plan to analyse and gather data from multiple models of common cardiovascular diseases in which incorrect EC behaviour is a key disease modulator. 

If they can establish the mechanisms behind EC dysfunction, their research could pave the way for understanding why these diseases develop and potentially inform the development of future therapeutic or even preventative strategies targeting the independent pathways.

Similar stories

New evidence for how our brains handle surprise

A new study from the Bruno Group is challenging our perceptions of how the different regions of the cerebral cortex function. A group of ‘quiet’ cells in the somatosensory cortex that rarely respond to touch have been found to react mainly to surprising circumstances. The results suggest their function is not necessarily driven by touch, but may indicate an important and previously unidentified role across all the major cortices.

Professor Dame Sue Black to deliver 2022 Christmas Lectures

In the 2022 Christmas Lectures from the Royal Institution, DPAG's Visiting Professor of Forensic Anatomy Dame Sue Black will share secrets of forensic science.

Kaitlyn Dennis to receive the William C Stanley Early Investigator Award

Congratulations are in order for DPhil student Kaitlyn Dennis, who has been awarded the William C Stanley Early Investigator Award. The award highlights the scientific accomplishments of promising young researchers and is a major focus of the Annual Meeting of the Society for Heart and Vascular Metabolism.

Becky Carlyle funded by leading dementia research charity to reveal new targets for Alzheimer's

Senior Postdoctoral Research Scientist Dr Becky Carlyle has been awarded a £420K funding boost from Alzheimer’s Research UK.

Researchers describe how cancer cells can defend themselves from the consequences of certain genetic defects

Swietach Group scientists have identified a rescue mechanism that allows cancers to overcome the consequences of inactivating mutations in critically important genes.