Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

New research from the Heather Group has shown that in type 2 diabetes an overload of lipids reduces the heart’s ability to generate energy during a heart attack, decreasing chances of recovery.

A graph showing the energy within a beating heart, in the form of Phosphocreatine (PCr) and the three phosphate peaks within Adenosine Triphosphate (ATP). At the beginning, these peaks are rising high. At 12 minutes, the heart is given a heart attack, and the peaks start to drop - firstly the PCr (the energy buffer) is lost from the heart, followed slowly by the three ATP peaks over the subsequent minutes. This shows the profile of energy starvation in a heart during a heart attack.
The heart losing its energy during a heart attack in real time

In patients with type 2 diabetes, the heart becomes starved of energy, leading to decreased recovery in the event of a heart attack. Diabetes is associated with high blood glucose and high blood lipids. Diabetes research tends to focus on the effects of high glucose, but changes in glucose concentrations do not explain why there is an energy deficit in the heart in type 2 diabetes.

It is known that the heart becomes laden with lipids in diabetes. Yet, there have been very few studies investigating the consequences of these high levels of lipids in the heart. Neither the specific lipids causing the metabolic upheaval that leads to energy starvation in the heart, nor the signalling pathways on which they are exerting these effects, have been identified.

New research from the Heather Group has interrogated whether the overload of lipids in the heart could be influencing the energy generation by the heart’s mitochondria. Researchers have found that a specific fatty acid intermediate called Palmitoyl CoA, an 'activated' form of palmitic acid, can regulate the phosphorylation apparatus within the mitochondria, but this regulation is lost in the lipid-loaded environment within the diabetic heart. According to lead researcher Associate Professor Lisa Heather“This has negative consequences for the diabetic heart during ischaemia, as this regulation allows the healthy heart to shut down wasteful ATP breakdown during ischaemia, but this preservation of precious ATP is lost in diabetes.  This may contribute to why patients with diabetes do significantly worse during a heart attack.”

Consequently, the team have demonstrated the necessity of focusing research efforts on the high levels of lipids in the circulation that disrupt a large number of process in the heart. They also demonstrate that targeting this lipid overload is a valid therapeutic target for the diabetic heart. Prof Heather said: “The therapeutic challenge lies in finding the ‘Goldilocks zone’ - we need lipids to provide the energy to keep the heart beating, but it's when we have too much that we see the negative effects as in diabetes. Too much or too little fat is bad for the heart, so we need to find a therapeutic approach that gets it just right!”

The full paper “Diabetic mitochondria are resistant to palmitoyl CoA inhibition of respiration, which is detrimental during ischaemia” is available to read in The FASEB Journal.

The paper is also featured in the i Newspaper both online and in print: New discovery could help diabetics avoid lasting heart attack damage (inews.co.uk)

Similar stories

New evidence for how our brains handle surprise

A new study from the Bruno Group is challenging our perceptions of how the different regions of the cerebral cortex function. A group of ‘quiet’ cells in the somatosensory cortex that rarely respond to touch have been found to react mainly to surprising circumstances. The results suggest their function is not necessarily driven by touch, but may indicate an important and previously unidentified role across all the major cortices.

Professor Dame Sue Black to deliver 2022 Christmas Lectures

In the 2022 Christmas Lectures from the Royal Institution, DPAG's Visiting Professor of Forensic Anatomy Dame Sue Black will share secrets of forensic science.

Kaitlyn Dennis to receive the William C Stanley Early Investigator Award

Congratulations are in order for DPhil student Kaitlyn Dennis, who has been awarded the William C Stanley Early Investigator Award. The award highlights the scientific accomplishments of promising young researchers and is a major focus of the Annual Meeting of the Society for Heart and Vascular Metabolism.

Researchers describe how cancer cells can defend themselves from the consequences of certain genetic defects

Swietach Group scientists have identified a rescue mechanism that allows cancers to overcome the consequences of inactivating mutations in critically important genes.

Randy Bruno and Scott Waddell receive Wellcome Discovery Awards

Congratulations are in order for Professors Randy Bruno and Scott Waddell who have each been awarded a prestigious Wellcome Trust Discovery Award to significantly enhance our understanding of higher cognitive functions.