Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

A new collaborative study involving DPAG's Wilson and Goberdhan Groups and the Nuffield Department of Surgical Sciences (NDS) has revealed surprising parallels between ‘prostate’ cells in flies and cancer patients.

Striking image

A new article from the collaborating groups of Clive Wilson and Deborah Goberdhan in DPAG and Freddie Hamdy in the Nuffield Department of Surgical Sciences is shedding new light on the mechanisms that lead to lethal forms of prostate cancer. Men with advanced prostate cancer are routinely treated with drugs that block the production of the steroid testosterone, which inhibits tumour growth. But within a couple of years, hormone-independent tumour cells emerge, which often still require the testosterone receptor to grow and this will lead to the death of the patient. Such pathological hormone-independent receptor signalling was thought to be unique to cancer cells.

DPAG's Aaron Leiblich, Josephine Hellberg and Aashika Sekar have now shown that prostate-like cells in the fruit fly also require a steroid hormone to grow; this hormone-dependent signalling stimulates secretion of proteins into the seminal fluid to promote fertility, just like the human prostate. However, when male flies mate, the steroid receptor switches to a hormone-independent mechanism when males mate. This stimulates more growth in these cells and drives more secretion, rapidly replacing what has been lost during mating. As in prostate cancer, this switch to hormone-independence involves the activation of proteins that stimulate cells to replicate their DNA.

"When Aaron Leiblich, a surgeon in my lab, first showed that steroids are required for growth of the fly prostate, we set out to genetically manipulate the cells to mirror the pathological switch to hormone-independent growth found in cancer patients," Clive Wilson recalls. "It was a big surprise to finally discover that this switch is a normal physiological process linked to mating."

Aashika Sekar, a third year DPhil student who is continuing the study, added: "We’ve already identified other genes that seem to only control the hormone-independent form of steroid receptor signalling in flies. These genes have also been implicated in prostate cancer, so if we can work out how to inhibit their action in flies, perhaps this will give us new ideas for blocking the lethal form of prostate cancer growth."

 

The full paper "Mating induces switch from hormone-dependent to hormone-independent steroid receptor-mediated growth in Drosophila secondary cells" is available to read in PLOS Biology.

Image Legend (above): The prostate-like cells in the fly male accessory gland that switch to steroid-independent growth (marked by red staining) have a higher turnover of secretory compartments (shown in green) than their neighbours

Similar stories

The brain’s one-sided teaching signals

A new study by the Lak group reveals a novel facet of dopamine signalling during visual decision making.

Fellowship awarded to Huriye Atilgan to enhance our understanding of value-based decision-making

Congratulations are in order for Postdoctoral Research Scientist Dr Huriye Atilgan who has been awarded a prestigious Sir Henry Wellcome Postdoctoral Fellowship funded by the Wellcome Trust.

The future of stroke treatment

A team of international collaborators including DPAG's Dr Mootaz Salman has been researching a promising new therapeutic for the treatment of strokes and other brain injuries.

New review reveals proof of concept for an anti-obesity immunotherapy

The Domingos lab has published a new opinion piece in Science investigating the implications of a Memorial Sloan Kettering Cancer Center study that lays the foundations for a potential new anti-obesity treatment in the form of targeting adipose tissue-resident macrophages.

New pathway established for multisensory cortical communication

Integration of information across the senses is critical for perception. This activity is thought to arise primarily from connections made in the brain's sensory cortical areas. A new paper from the King Group uncovers evidence for the first time on the little understood role of subcortical circuits in shaping the multisensory properties of primary cortical neurons.