Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

A cross-departmental collaboration involving Associate Professor Esther Becker and Lauren Watson, a research scientist in the Becker group, has led to the publication of an important paper reporting dominant mutations that cause spinocerebellar ataxias. 

Spinocerebellar ataxias are a group of diseases that cause degeneration in the cerebellum, which is the part of the brain responsible for controlling movement. Whilst there many different types of this disorder, each with their own unique symptoms, generally the disorder is characterised by problems with movement that worsen over time. 

The paper, published in the American Journal of Human Genetics, describes a series of mutations in a human gene called GRM1, which produces a glutamate receptor known as mGlur1. mGlur1 is one of the most abundant of its group of receptors in the Central Nervous System and is particularly rich in the group of brain cells in the cerebellum known as Purkinje cells. Disease causing mutations in GRM1 are quite rare.; however, a single family with recessive mutations has been identified as causing cerebellar ataxia and intellectual disability.

This paper has now identified, for the first time, dominant mutations in GRM1 that cause distinct disease symptoms. Two of the mutations led to increased receptor activity and caused slowly progressive ataxia with disease onset between the ages of 20 and 50. These families did not carry any other known spinocerebellar ataxia-causing mutations. The team also identified another mutation occurring in a child, whose parents were unaffected, that led to the production of a shorter form of the protein. This caused intellectual disability and cerebellar ataxia without apparent shrinking of the cerebellum.

The finding of mutations that lead to increased receptor activity are particularly important because drugs are available that have the opposite effect, reducing activity. The researchers tested an approved mGluR1 drug Nitazoxanide against these mutant receptors in laboratory conditions.  Nitazoxanide was indeed shown to inhibit the mutant receptor in these experiments.  This offers the hope that drugs targeting mGlur1 may one day offer therapeutic opportunities in cerebellar ataxias.

To find out more about the work that goes on in the Becker Group, visit their webpage.  

Similar stories

Just over half of British Indians would take COVID vaccine

EDI News Outreach Postdoctoral Publication Research Riley Group News

University of Oxford researchers from the Department of Physiology, Anatomy and Genetics (DPAG) and the Department of Psychiatry, in collaboration with The 1928 Institute, have published a major new study on the impact of COVID-19 on the UK’s largest BME population.

Thomas Willis (1621 - 1675) 400th Birthday - Alastair Buchan in conversation with Zoltán Molnár

General Research

Professor Zoltán Molnár talks to Pro-Vice-Chancellor Professor Alastair Buchan to learn more about Thomas Willis's residence and base for scientific discoveries, Beam Hall.

Thomas Willis (1621 - 1675) 400th Birthday - Erica Charters in conversation with Zoltán Molnár

General Research

Professor Zoltán Molnár talks to Dr Erica Charters for a History of Medicine perspective on Oxford physician and Father of Neurology Thomas Willis.

Thomas Willis 400th anniversary trailer

General Research

On 27 January 2021 we celebrate the 400th anniversary of the birth of the greatest neuroanatomist of all time, Thomas Willis. DPAG's Professor Zoltán Molnár has interviewed 8 experts - watch a video preview of what's to come from Monday onwards! With thanks to St John's College.

Earliest origins of the forming heart identified

Cardiac Theme Postdoctoral Publication Research

The earliest known progenitor of the outermost layer of the heart has been characterised for the first time and linked to the development of other critical cell types in the developing heart in a new paper from the Srinivas group led by BHF Immediate Fellow Dr Richard Tyser.

Covid-19 lung damage identified in study

Postdoctoral Research

In a new study into the longer-term damage amongst patients recovering from COVID-19, DPAG Research Fellow Dr James Grist of the Tyler Lab has been running a novel scanning technique that shows a dramatic decrease in the ability of the lungs to diffuse gas in to the blood stream after COVID infection. This work may shed light on the problem of breathlessness after COVID infection and help guide us in understanding therapeutic selection and efficacy.