Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A cross-departmental collaboration involving Associate Professor Esther Becker and Lauren Watson, a research scientist in the Becker group, has led to the publication of an important paper reporting dominant mutations that cause spinocerebellar ataxias. 

Spinocerebellar ataxias are a group of diseases that cause degeneration in the cerebellum, which is the part of the brain responsible for controlling movement. Whilst there many different types of this disorder, each with their own unique symptoms, generally the disorder is characterised by problems with movement that worsen over time. 

The paper, published in the American Journal of Human Genetics, describes a series of mutations in a human gene called GRM1, which produces a glutamate receptor known as mGlur1. mGlur1 is one of the most abundant of its group of receptors in the Central Nervous System and is particularly rich in the group of brain cells in the cerebellum known as Purkinje cells. Disease causing mutations in GRM1 are quite rare.; however, a single family with recessive mutations has been identified as causing cerebellar ataxia and intellectual disability.

This paper has now identified, for the first time, dominant mutations in GRM1 that cause distinct disease symptoms. Two of the mutations led to increased receptor activity and caused slowly progressive ataxia with disease onset between the ages of 20 and 50. These families did not carry any other known spinocerebellar ataxia-causing mutations. The team also identified another mutation occurring in a child, whose parents were unaffected, that led to the production of a shorter form of the protein. This caused intellectual disability and cerebellar ataxia without apparent shrinking of the cerebellum.

The finding of mutations that lead to increased receptor activity are particularly important because drugs are available that have the opposite effect, reducing activity. The researchers tested an approved mGluR1 drug Nitazoxanide against these mutant receptors in laboratory conditions.  Nitazoxanide was indeed shown to inhibit the mutant receptor in these experiments.  This offers the hope that drugs targeting mGlur1 may one day offer therapeutic opportunities in cerebellar ataxias.

To find out more about the work that goes on in the Becker Group, visit their webpage.  

Similar stories

Key cause of type 2 diabetes uncovered

Research led by Dr Elizabeth Haythorne and Professor Frances Ashcroft reveals high blood glucose reprograms the metabolism of pancreatic beta-cells in diabetes. They have discovered that glucose metabolites, rather than glucose itself, are key to the progression of type 2 diabetes. Glucose metabolites damage pancreatic beta-cell function, so they are unable to release enough of the hormone insulin. Reducing the rate at which glucose is metabolised, and these glucose metabolites build up, can prevent the effects of hyperglycaemia.

New study shows clinical symptoms for Alzheimer’s can be predicted in preclinical models

Establishing preclinical models of Alzheimer’s that reflect in-life clinical symptoms of each individual is a critically important goal, yet so far it has not been fully realised. A new collaborative study from the University of Oxford has demonstrated that clinical vulnerability to an abnormally abundant protein in Alzheimer’s brain is in fact reflected in individual patient induced pluripotent stem cell-derived cortical neurons.

Updating the circuit maps of the sympathetic neural network

A new review from Professor Ana Domingos’ lab and colleagues offers a fresh modern viewpoint on sympathetic neurons and their relation to immune cells and obesity.

New Pfizer grant paves the way to a better understanding of how body fat is controlled

Professor Ana Domingos has been awarded a highly competitive independent research grant from Pfizer to discover ‘the role of Sympathetic-associated Perineurial barrier Cells in obesity’.

Collaborative MRC grant paves the way to new therapeutic targets for stress and anxiety disorders

Dr Armin Lak, Associate Professor Ed Mann and Professor Zoltán Molnár have been awarded a £733K Project Grant from the Medical Research Council on “Orexinergic projections to neocortex: potential role in arousal, stress and anxiety-related disorders”.