Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

DPAG scientists develop single-cell oxygen saturation imaging to study oxygen handling by red blood cells. New physiological techniques that measure the blood's oxygen saturation are particularly important in light of the current pandemic, as COVID-19 patients present an abnormally low concentration of oxygen in the blood.

Oxygen saturation of blood is a fundamental clinical parameter that assesses how much oxygen is being carried by red blood cells (RBCs). The importance of these so-called oximetery measurements is highlighted by the current COVID-19 crisis because patients present a profound drop in blood oxygen, known as hypoxaemia. However, another aspect of oxygen handling by blood that is not currently measured is the speed with which RBCs exchange gases. Indeed, routinely performed tests for gas-carrying capacity (for example, total hemoglobin) cannot determine how fast RBCs take-up and release oxygen. Such information is critical for evaluating the physiological fitness of RBCs, which have less than one second to exchange large volumes of oxygen in the lungs and tissues.

To address this problem, a team led by Associate Professor Pawel Swietach has designed a method to quantify gas exchange in individual RBCs. Applying this method to various blood disorders has highlighted the barriers to efficient gas exchange. The results identify the adaptations that allow healthy RBCs to exchange gases quickly, and explain how disease-related changes may impair oxygen transport.

According to Prof Swietach: “With single-cell resolution, we can identify physiologically inferior subpopulations, providing a clinically useful appraisal of blood quality. Our technique can provide new information about oxygen transport, particularly in disorders such as COVID-19 where the cause of hypoxaemia is not established and therefore the choice of treatment remains unclear.”

The full paper "Single-cell O2 exchange imaging shows that cytoplasmic diffusion is a dominant barrier to efficient gas transport in red blood cells" is available to read in PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Similar stories

New blood test from DPAG cardiac researchers could save lives of heart attack victims

Researchers from the Herring group have developed a blood test that measures stress hormone levels after heart attacks. The test – costing just £10 – could ensure patients receive timely life-saving treatment.

Mootaz Salman set to target new treatments for stroke

The Chief Scientist Office of the Government of Scotland has awarded a collaborative grant of £298,966 to Dr Mootaz Salman to seek new therapeutic avenues to treat stroke.

New BBSRC grant to further our insights into how the cortex controls sleep

Professor of Sleep Physiology Vladyslav Vyazovskiy and Professor of Developmental Neuroscience Zoltán Molnár have been awarded a Project Grant from the Biotechnology and Biological Sciences Research Council (BBSRC) for “Brain mechanisms of sleep: top-down or bottom-up?”

Raised intracellular chloride levels underlie the effects of tiredness in cortex

A new study, co-authored by Professor Vladyslav Vyazovskiy, published in Nature Neuroscience, has revealed that intracellular chloride levels within cortical pyramidal neurons reflect sleep–wake history.

Key cause of type 2 diabetes uncovered

Research led by Dr Elizabeth Haythorne and Professor Frances Ashcroft reveals high blood glucose reprograms the metabolism of pancreatic beta-cells in diabetes. They have discovered that glucose metabolites, rather than glucose itself, are key to the progression of type 2 diabetes. Glucose metabolites damage pancreatic beta-cell function, so they are unable to release enough of the hormone insulin. Reducing the rate at which glucose is metabolised, and these glucose metabolites build up, can prevent the effects of hyperglycaemia.