Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

We experience a wide range of sounds at varying levels. The brain's auditory neurons constantly adapt their responses to changes in sound level to help us perceive and understand what we hear. King Group researchers have previously demonstrated how these neurons do this and have now produced new evidence for exactly where this happens in the brain and the perceptual consequences of these adaptations.

The soundscapes that we experience vary widely from a quiet office or library to a busy pub or high street. Auditory neurons in the brain cope with these constantly changing inputs by adapting their responses to match the statistics of the sounds that are heard. Professor Andrew King’s group has previously shown that neurons in the auditory cortex adjust their gain – their sensitivity to changes in sound level – in response to the contrast or range of sound levels that are heard. When the contrast is low, perhaps due to the presence of background noise, neurons become more sensitive to changes in level. On the other hand, they reduce their gain when the contrast is high.

Professor Andrew King observes: "This is important because contrast adaptation helps to match the range of stimulus values that neurons can encode through a change in their firing rate to the stimulus range that is currently being experienced. This is therefore an efficient way of representing the changing auditory scene." The group’s research has also shown that adaptation to contrast helps the brain to construct stable representations of complex sounds, such as speech, despite the presence of noise in the stimulus.

Until now, it has been assumed that contrast gain control is primarily a property of cortical neurons and several research groups around the world are exploring the role of cortical inhibitory interneurons in adaptation to stimulus statistics.

Now, a new study published in Nature Communications by the King Group has shown in mice that neurons in the thalamus and the midbrain show a comparable degree of contrast gain control to that seen in the auditory cortex. Furthermore, by using optogenetic silencing, they found that descending projections from the cortex are not responsible for the adaptation observed subcortically.

The perceptual consequences of adaptation have so far received little attention. The team, which includes former DPhil student Dr Michael Lohse, Associate Professor Victoria Bajo Lorenzana and Dr Ben Willmore, went on to show that the ability of human listeners to distinguish small changes in sound level varies with stimulus contrast in a similar way. In confirmation, they found that contrast adaptation measured physiologically predicts these behavioural results.

According to Professor King, “Our findings show that these adaptive properties, which are emerging as an important feature of sensory processing, arise at an earlier stage in the auditory processing pathway than previously thought and are sufficient to account for contrast-dependent effects on human perception. Demonstrating how neurons adjust to the statistics of sounds will both improve our understanding of the computational principles underlying the representation of sensory information in the brain and provide insight into its capacity to process the abnormal inputs that result from sensory disorders."

The full paper "Neural circuits underlying auditory contrast gain control and their perceptual implications" is available to read in Nature Communications.

Similar stories

Oxford-led research maps milestone stage of human development for the first time

Scientists have shed light on an important stage of early embryonic development that has never been fully mapped out in humans before.

Mapping uncharted networks in the progression of Parkinson’s

A major new $9 million project funded by the Aligning Science Across Parkinson’s (ASAP) initiative will map the original circuits vulnerable to Parkinson’s on an unprecedented scale. The project is a collaboration between core investigators Stephanie Cragg, Richard Wade-Martins, and Peter Magill at Oxford, Mark Howe at Boston University and Dinos Meletis at the Karolinska Institutet, as well as collaborators Yulong Li at Peking University and Michael Lin at Stanford University.

Drug could help diabetic hearts recover after a heart attack

New research led by Associate Professor Lisa Heather has found that a drug known as molidustat, currently in clinical trials for another condition, could reduce risk of heart failure after heart attacks.

Blood bank storage can reduce ability of transfusions to treat anaemia

New research from the Swietach Group in collaboration with NHS Blood and Transplant has demonstrated that the process of storing blood in blood banks can negatively impact the function of red blood cells and consequently may reduce the effectiveness of blood transfusions, a treatment commonly used to combat anaemia.

Overlapping second messengers increase dynamic control of physiological responses

New research from the Parekh and Zaccolo groups reveals that a prototypical anchoring protein, known to be responsible for regulating several important physiological processes, also orchestrates the formation of two important universal second messengers.