Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Care for critically-ill patients with shock could be improved, it is hoped, after the first successful testing by University of Oxford scientists of a new machine to record oxygen consumption in real time.

The University of Oxford has developed a new machine to record oxygen consumption in real time for critically-ill patients with shock. Photograph: University of Oxford.

The new technology has arisen through a collaboration between Professor Peter Robbins in the Department of Physiology, Anatomy and Genetics and Professors Grant Ritchie and Gus Hancock in the Department of Chemistry.

It combines laser spectroscopy and precise flow measurement of breath in a single medical device which fits into a standard ventilation tube.

The work has received public funding from the NIHR Oxford Biomedical Research Centre and the Medical Research Council.

Professor Peter Robbins, who is directing the research, said: “This is the culmination of many years of development and it has finally come to fruition.

“It is exciting for us to be able to offer something to doctors that has the potential to improve significantly the care of very sick patients.”

Patients in shock suffer a lack of oxygen throughout the body, causing many of their organs to deteriorate and eventually even stop working altogether.

The possible underlying causes of shock include heart attack, haemorrhage, and sepsis. Common treatments include drugs, oxygen, and blood transfusions.

Doctors do not at present have any direct way of measuring how much oxygen is being used by the body, making it difficult for them to judge which treatments are likely to be most beneficial.

Tests in healthy volunteers and in patients having anaesthetics at Oxford’s John Radcliffe Hospital indicate the precision of the device is better than anything previously achieved. The results are published today in Science Advances.

Stuart McKechnie, Consultant in Intensive Care at the John Radcliffe Hospital, said “Though we already monitor critically-ill patients very closely, this device promises to provide highly useful additional information that may help us to care better for patients with sepsis and shock in the future.”

The device is now being used as part of a further study in the Intensive Care units within Oxford University Hospitals NHS Foundation Trust, which runs the John Radcliffe Hospital.

Similar stories

Professor Dame Sue Black to deliver 2022 Christmas Lectures

In the 2022 Christmas Lectures from the Royal Institution, DPAG's Visiting Professor of Forensic Anatomy Dame Sue Black will share secrets of forensic science.

Researchers describe how cancer cells can defend themselves from the consequences of certain genetic defects

Swietach Group scientists have identified a rescue mechanism that allows cancers to overcome the consequences of inactivating mutations in critically important genes.

Randy Bruno and Scott Waddell receive Wellcome Discovery Awards

Congratulations are in order for Professors Randy Bruno and Scott Waddell who have each been awarded a prestigious Wellcome Trust Discovery Award to significantly enhance our understanding of higher cognitive functions.

Researchers discover novel form of adaptation in the auditory system

DPAG’s auditory neuroscience researchers have found that the auditory system adapts to the changing acoustics of reverberant environments by temporally shifting the inhibitory tuning of cortical neurons to remove reverberation.

Collaborative team driven by DPAG and Chemistry awarded RSC Horizon Prize

The Molecular Flow Sensor Team, with collaborating members principally from DPAG’s Robbins and Talbot groups and the Department of Chemistry, has been named the winner of the Royal Society of Chemistry’s (RSC) Analytical Division Horizon Prize for the development of a new technology for measuring lung function.