Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

Care for critically-ill patients with shock could be improved, it is hoped, after the first successful testing by University of Oxford scientists of a new machine to record oxygen consumption in real time.

The University of Oxford has developed a new machine to record oxygen consumption in real time for critically-ill patients with shock. Photograph: University of Oxford.

The new technology has arisen through a collaboration between Professor Peter Robbins in the Department of Physiology, Anatomy and Genetics and Professors Grant Ritchie and Gus Hancock in the Department of Chemistry.

It combines laser spectroscopy and precise flow measurement of breath in a single medical device which fits into a standard ventilation tube.

The work has received public funding from the NIHR Oxford Biomedical Research Centre and the Medical Research Council.

Professor Peter Robbins, who is directing the research, said: “This is the culmination of many years of development and it has finally come to fruition.

“It is exciting for us to be able to offer something to doctors that has the potential to improve significantly the care of very sick patients.”

Patients in shock suffer a lack of oxygen throughout the body, causing many of their organs to deteriorate and eventually even stop working altogether.

The possible underlying causes of shock include heart attack, haemorrhage, and sepsis. Common treatments include drugs, oxygen, and blood transfusions.

Doctors do not at present have any direct way of measuring how much oxygen is being used by the body, making it difficult for them to judge which treatments are likely to be most beneficial.

Tests in healthy volunteers and in patients having anaesthetics at Oxford’s John Radcliffe Hospital indicate the precision of the device is better than anything previously achieved. The results are published today in Science Advances.

Stuart McKechnie, Consultant in Intensive Care at the John Radcliffe Hospital, said “Though we already monitor critically-ill patients very closely, this device promises to provide highly useful additional information that may help us to care better for patients with sepsis and shock in the future.”

The device is now being used as part of a further study in the Intensive Care units within Oxford University Hospitals NHS Foundation Trust, which runs the John Radcliffe Hospital.

Similar stories

REF 2021 results

Oxford Parkinson’s Disease Centre awarded £3.8 million to reveal the role of calcium in Parkinson’s

A collaborative research team led by the Oxford Parkinson’s Disease Centre (OPDC) has been awarded a £3.8 million Wellcome Trust Collaborative Award to study the function of calcium in dopamine neurons, and how this is plays a role in Parkinson’s. Their research will help explain how and why dopamine neurons are vulnerable in the disease and look at how they may be preserved.

The effect of nuclear pH on cardiac gene expression

Research led by Dr Alzbeta Hulikova and Professor Pawel Swietach has, for the first time, described the potential regulation of nuclear acid-base chemistry in neonatal and adult cardiomyocytes, and explained its relevance in the context of heart physiology and pathology.

A role of sleep in tinnitus identified for the first time

Phantom percepts, such as subjective tinnitus, are driven by fundamental changes in spontaneous brain activity. Sleep is a natural example of major shifts in spontaneous brain activity and perceptual state, suggesting an interaction between sleep and tinnitus that has so far been little considered. In a new collaborative review article from DPAG’s auditory and sleep neuroscientists, tinnitus and sleep research is brought together for the first time, and, in conclusion, they propose a fundamental relationship between natural brain dynamics and the expression and pathogenesis of tinnitus.

An unexpected role for the cell’s largest membrane network

A new Klemm Lab-led paper has uncovered a new mechanism involving the endoplasmic reticulum that is critical to the organisation and position of the microtubule (MT) cytoskeleton, which ultimately dictates the shape and function of our body’s cells.