Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Research led by Postdoctoral Research Scientist Dr Elizabeth Haythorne and published in Nature Communications sheds light on a vicious cycle that causes specialised cells to fail in their function to maintain healthy bloody sugar levels.

The pancreas produces the hormone insulin which is secreted from specialised cells called Beta cells (β-cells) into the bloodstream in response to a rise in circulating glucose. Insulin facilitates sugar absorption from the blood into other tissues, such as the heart, muscle and fat, where it is metabolised to create energy. This process is crucial in order to regulate the body’s blood sugar level and avoid hyperglycaemia, which means there is too much glucose in the blood.

Type 2 diabetes (T2D) now affects more than 450 million people worldwide. The socioeconomic burden of the disease is substantial because it markedly increases mortality, morbidity and health care costs. T2D arises when β-cells fail to secrete adequate amounts of insulin in order to maintain blood sugar levels within a normal, healthy range. The underlying mechanism behind why this happens is not well understood.

Mitochondria are intracellular organelles which are responsible for generating energy from fuels, such as glucose. Healthy mitochondria are essential for β-cells to secrete insulin in response to a rise in blood sugar.  In newly published research from the Ashcroft Group led by Postdoctoral Research Scientist Dr Elizabeth Haythorne, using a combination of techniques to examine functional, protein and gene changes, the team have found that prolonged hyperglycaemia impairs mitochondrial metabolism and energy production. They also found that multiple genes and proteins involved in the metabolic pathways glycolysis and gluconeogenesis were abnormally upregulated.

These sets of data indicate that hyperglycaemia induces a significant dysregulation of major metabolic pathways in pancreatic β-cells. The researchers propose that this underlies the progressive failure of β-cells in diabetes.

The full publication Diabetes causes marked inhibition of mitochondrial metabolism in pancreatic β-cells is available to read here.

Similar stories

New blood test from DPAG cardiac researchers could save lives of heart attack victims

Researchers from the Herring group have developed a blood test that measures stress hormone levels after heart attacks. The test – costing just £10 – could ensure patients receive timely life-saving treatment.

Mootaz Salman set to target new treatments for stroke

The Chief Scientist Office of the Government of Scotland has awarded a collaborative grant of £298,966 to Dr Mootaz Salman to seek new therapeutic avenues to treat stroke.

Professor Dame Frances Ashcroft awarded the Manpei Suzuki International Prize for Diabetes Research

The 2022 Manpei Suzuki International Prize for Diabetes Research recognises original and excellent achievements in diabetes research. Professor Ashcroft is the first women to win in the 15 years this prestigious Prize has been awarded.

Inaugural winners of the DPAG Prize for Public Engagement with Research announced

Congratulations are in order for the winners Katherine Brimblecombe and Anna Kordala, and also to Jéssica Luiz and Andia Redpath who were highly commended for their outreach and public engagement work.

New BBSRC grant to further our insights into how the cortex controls sleep

Professor of Sleep Physiology Vladyslav Vyazovskiy and Professor of Developmental Neuroscience Zoltán Molnár have been awarded a Project Grant from the Biotechnology and Biological Sciences Research Council (BBSRC) for “Brain mechanisms of sleep: top-down or bottom-up?”