Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

The severity of Zika virus-related deformations in babies has been shown to be affected by environmental factors such as maternal nutrition. The study was partially funded by a joint MRC Grant between DPAG's Professor Zoltán Molnár and Associate Professor Patricia Garcez of the Federal University of Rio de Janeiro.

Image credit: Shutterstock

Environmental factors, such as the diets of pregnant women, have been shown to have an effect on the extent and severity of developmental malformations in babies associated with Zika virus (ZIKV) congenital infection.

Congenital Zika Syndrome (CZS) refers to a collection of developmental malformations associated with Zika virus (ZIKV) congenital infection. This syndrome includes devastating conditions that have a huge impact on the rest of the life of the individual and their family, such as smaller (microcephaly) and unfolded (lissencephalic) brains, retinal abnormalities, enlarged ventricles of the heart, a lack of the inter-hemispheric connections and calcifications in the brain.

Brazil has been widely affected by ZIKV, but ~75% of CZS have been found in the socio-economically disadvantaged region of the Northeast.

In a new study, researchers from our Department and the Federal University of Rio de Janeiro have found that this rise in cases of CZS is linked to poor diet among the infants’ mothers.

Read the full story on the University of Oxford website.

The full paper, "Congenital Zika Syndrome is associated with Maternal Protein Malnutrition" can be read in Sciences Advances (AAAS).

Similar stories

Oxford-led research maps milestone stage of human development for the first time

Scientists have shed light on an important stage of early embryonic development that has never been fully mapped out in humans before.

Mapping uncharted networks in the progression of Parkinson’s

A major new $9 million project funded by the Aligning Science Across Parkinson’s (ASAP) initiative will map the original circuits vulnerable to Parkinson’s on an unprecedented scale. The project is a collaboration between core investigators Stephanie Cragg, Richard Wade-Martins, and Peter Magill at Oxford, Mark Howe at Boston University and Dinos Meletis at the Karolinska Institutet, as well as collaborators Yulong Li at Peking University and Michael Lin at Stanford University.

Drug could help diabetic hearts recover after a heart attack

New research led by Associate Professor Lisa Heather has found that a drug known as molidustat, currently in clinical trials for another condition, could reduce risk of heart failure after heart attacks.

Blood bank storage can reduce ability of transfusions to treat anaemia

New research from the Swietach Group in collaboration with NHS Blood and Transplant has demonstrated that the process of storing blood in blood banks can negatively impact the function of red blood cells and consequently may reduce the effectiveness of blood transfusions, a treatment commonly used to combat anaemia.

Overlapping second messengers increase dynamic control of physiological responses

New research from the Parekh and Zaccolo groups reveals that a prototypical anchoring protein, known to be responsible for regulating several important physiological processes, also orchestrates the formation of two important universal second messengers.