Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A new DPAG-led review paper, published in the journal Brain, has shown that a poorly understood region of the brain called the claustrum may play an important role in how we experience pain.

A representative T2-weighted image of a healthy human brain (red arrows indicate the claustrum) compared with a T2-weighted image showing a lesion reported as affecting the claustrum. © Ishii et al 2011 AJNR, DOI:10.3174/ajnr.A2603 (claustrum lesion)
A healthy human brain (left) and a lesion affecting the claustrum (right). Red arrows indicate the claustrum.

The little understood area of the brain called the claustrum may be the next frontier in improving outcomes for brain damage patients.

A collaboration of Oxford University research groups from DPAG, the Nuffield Department of Clinical Neurosciences (NDCN) and Experimental Psychology (EP) have uncovered new clues regarding the function of one of most densely interconnected, yet rarely studied, areas of the brain.

The researchers reviewed studies of patients with lesions in the claustrum, which although rare show cognitive impairments and seizures. Furthermore, the lack of clinical focus on the claustrum may mean there are many more cases yet to be uncovered.

They also uncovered an underappreciated link between the claustrum and pain. It is already known that there are links between the claustrum and perception, salience and the sleep-wake cycle, but this is the first time a research team has shown how the claustrum might be more involved in the debilitating experience of pain.

Dr Adam Packer, the lead author of the study, said: "The problem with understanding how the claustrum works is that it is deep inside the brain, and damage that is specific to it is a very rare occurrence. What makes it more difficult to work out what the claustrum actually does is that these rare occurrences are also linked to such a broad range of symptoms.

"Clearly, when the claustrum is damaged the effects are severe and better therapies are urgently needed. It is possible that claustrum damage is more common than we currently realise, and it may be a crucial component in many more brain damage cases.

"This work is important because it gives us some insight into the cognitive and neurological processes in which the claustrum may be involved, and gives us targets to pursue in basic research in the lab."

The researchers found several recorded instances of either infection, auto immune, or other process that attacked the claustrum in particular, and by analysing the results of these studies and others the most common symptoms in patients were cognitive impairment and seizures.

More work is required to better understand the claustrum and better understand the impact of damage to the claustrum, which could ultimately change clinical guidelines.

The multidisciplinary team included three first authors Dr Huriye Atilgan (DPAG), Dr Max Doody (DPAG), Dr David Oliver (University of Toronto), Professor Vladyslav Vyazovskiy (DPAG’s sleep PI), Dr Adam Packer (DPAG), Professor Irene Tracey (FMRIB and NDCN), and Associate Professor Sanjay Manohar (EP and NDCN).

More information about the research, including a video interview with Dr Adam Packer, can be found here.

The full paper, ‘Human lesions and animal studies link the claustrum to perception, salience, pain, and sleep’, is available to read in the journal Brain.

This story is also featured on the University of Oxford website.

Similar stories

Vladyslav Vyazovskiy elected Vice President of the European Sleep Research Society

Congratulations are in order to Professor Vladyslav Vyazovskiy on his appointment as Vice President (Basic) of the European Sleep Research Society (ESRS).

New evidence for how our brains handle surprise

A new study from the Bruno Group is challenging our perceptions of how the different regions of the cerebral cortex function. A group of ‘quiet’ cells in the somatosensory cortex that rarely respond to touch have been found to react mainly to surprising circumstances. The results suggest their function is not necessarily driven by touch, but may indicate an important and previously unidentified role across all the major cortices.

Professor Dame Sue Black to deliver 2022 Christmas Lectures

In the 2022 Christmas Lectures from the Royal Institution, DPAG's Visiting Professor of Forensic Anatomy Dame Sue Black will share secrets of forensic science.

Zoltán Molnár delivers Keynote Lecture at first-of-its-kind Anatomical conference

Professor Zoltán Molnár delivers the first Keynote Lecture at the 116th Annual Meeting of the Anatomische Gesellschaft, which this year is held as a Joint Meeting with the Anatomical Society for the first time.

Researchers describe how cancer cells can defend themselves from the consequences of certain genetic defects

Swietach Group scientists have identified a rescue mechanism that allows cancers to overcome the consequences of inactivating mutations in critically important genes.