Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Dr Deborah Goberdhan and her team have identified a protein used by tumours to help them detect food supplies. Initial studies show that targeting the protein could restrict cancerous cells’ ability to grow.

Image: 'Tumours - Cancer cells seek nutrients from the body in order to grow’

Cancer cellA team from Oxford University’s Department of Physiology, Anatomy and Genetics led by Dr Deborah Goberdhan worked with cancer doctor and researcher, Professor Adrian Harris, to understand the effects of this protein called PAT4.

Dr Goberdhan said: ‘We found that aggressive cancer cells manufacture more PAT4, which enables them to make better use of available nutrients than the cells around them – including healthy tissue.’

Cancer cells often have restricted access to the body’s nutrient-rich blood supply. The ability to sense and acquire nutrients is critical for a cancer to grow.

Dr Goberdhan’s and Prof Harris’s groups collaborated to develop an antibody that could be used to highlight PAT4 in human tissue samples. This was then used to study anonymous tumour samples taken from patients with colorectal cancer, a common form of the disease.

The results were compared to the known outcomes for the patients. Those who had higher levels of PAT4 in their tumours did less well than those with lower levels – being more likely to relapse and die.

The researchers then looked at what happened when PAT4 levels were reduced. They showed that by reducing PAT4 levels, cancerous tumours grew more slowly.

Dr Goberdhan said: ‘These findings support each other. Not only do higher levels of PAT4 mean a worse outcome, but lowering levels improves the situation. This means that we have identified a mechanism which cancer cells prefer to use and which we might be able to target as part of a combination treatment.’

The research, funded by Cancer Research UK, the Wellcome Trust and the Biotechnology and Biological Sciences Research Council is published in the science journal Oncogene on 5 October 2015. It continues and may eventually provide a way of increasing survival from cancer.

The paper, PAT4 levels control amino acid sensitivity of rapamycin-resistant mTORC1 from the golgi and affect clinical outcome in colorectal cancer, appears in the journal Oncogenedoi:10.1038/onc.2015.363.

Source: University of Oxford website

 

See also:

  • Article in the Mirror
  • Articles in the Daily Telegraph and the Sun (images below)

The Daily Telegraph

 The Sun

Similar stories

Can humans hibernate?

Illuminating new TEDx Talk from Professor of Sleep Physiology Vladyslav Vyazovskiy

New insights into chemogenetic designer drugs to enhance our study of behaviour

A collaborative team of researchers in DPAG and Pharmacology led by Dr Lukas Krone have uncovered striking new data demonstrating that two widely used designer drugs used to turn populations of neurons on and off in the brain cause unexpected effects on sleep. These results demonstrate a critical need to improve chemogenetic approaches in behavioural studies.

Unlocking the Secrets of cAMP Signalling in the Heart: A Pathway to Targeted Therapeutics

A new Zaccolo group study has revealed key new insights into the role of cAMP signalling in both healthy and disease settings within the heart. They have identified new cAMP nanodomains in cardiac muscle cells that have far reaching implications for the treatment of heart disease.

Key exosome subtype in cancer progression identified

Collaborative work from DPAG and Oncology researchers has revealed a potential new pathway to block the production of a specific group of exosomes made in the cell’s recycling system that can promote the growth of cancerous tumours.

New blood test from DPAG cardiac researchers could save lives of heart attack victims

Researchers from the Herring group have developed a blood test that measures stress hormone levels after heart attacks. The test – costing just £10 – could ensure patients receive timely life-saving treatment.