Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

The earliest known progenitor of the outermost layer of the heart has been characterised for the first time and linked to the development of other critical cell types in the developing heart in a new paper from the Srinivas group led by BHF Immediate Fellow Dr Richard Tyser.

Frontal view of a developing mouse heart used in the study

The heart is the first organ to form during development and is critical for the survival of the embryo. The forming heart is very small, less than half a millimetre in width, and so far the precise molecular identity of the various cell types that make up the heart during these early stages have been poorly defined. However, recent years have seen rapid development in techniques which allow an unbiased assessment of molecular identity at the single cell level. Alongside this, advances in imaging technologies have now allowed researchers to visualise heart formation at high resolution and in real time.

In new research from the Srinivas Group led by Dr Richard Tyser and Dr Ximena Ibarra-Soria, the team combined these cutting-edge technologies to profile the molecular identity and precise locations of cells involved in the formation of the mouse embryonic heart. This allowed them to identify the earliest known progenitor of the epicardium, the outermost layer of the heart and an important source of signals and cells during cardiac development and injury.

Dr Tyser said: “The epicardium is known to have a role in both development and disease, especially following a heart attack when it can generate cells required for repair such as fibroblasts, vascular smooth muscle and cardiomyocytes. This study could be therapeutically applicable at two levels: first, understanding the origins of congenital heart defects and second, providing insight into regenerative strategies to treat heart disease.”

The epicardium forms from a tissue called the proepicardium and the origin of this tissue has been unclear to the research community for some time. Additionally, while the epicardium has been profiled in the past, this has only been done during later stages of embryonic development. In a new paper published in Science, Dr Tyser and Dr Ibarra-Soria’s research marks the first time the cells that give rise to the epicardium have been profiled and anatomically localised. In doing so, the team not only identify a new group of cells that give rise to the proepicardium, thus revealing its origin, but they also show that this group of cells can also directly give rise to a second type of heart cell: cardiomyocytes, which are responsible for enabling the heart to contract and thus pump blood around the body.

According to Dr Tyser: “This study has opened up a number of different lines of research. Having characterised the molecular identity of the different progenitor cell types in the forming heart we will now investigate how these progenitors initially form, their lineage relationship and the role of specific genes, identified in this study, during heart development and disease.”

The research was produced in collaboration with John Marioni (University of Cambridge) and Philipp Keller (HHMI Janelia Research Campus).

The full paper “Characterization of a common progenitor pool of the epicardium and myocardium” is available to read in Science.

Similar stories

Drug could help diabetic hearts recover after a heart attack

New research led by Associate Professor Lisa Heather has found that a drug known as molidustat, currently in clinical trials for another condition, could reduce risk of heart failure after heart attacks.

DPAG Researchers honoured for their work in cardiac metabolism

Kaitlyn Dennis, Ujang Purnama and Kerstin Timm have won prizes across each of the three award categories at this year’s Society for Heart and Vascular Metabolism conference, demonstrating DPAG's continued excellence in cardiac metabolism research.

Richard Tyser and Jack Miller honoured by the British Society of Cardiovascular Research

Dr Richard Tyser is this year’s winner of the Bernard and Joan Marshall Early Career Investigator Prize, and Dr Jack Miller has received a runner-up award, at the British Society of Cardiovascular Research Autumn Meeting.

Blood bank storage can reduce ability of transfusions to treat anaemia

New research from the Swietach Group in collaboration with NHS Blood and Transplant has demonstrated that the process of storing blood in blood banks can negatively impact the function of red blood cells and consequently may reduce the effectiveness of blood transfusions, a treatment commonly used to combat anaemia.

Overlapping second messengers increase dynamic control of physiological responses

New research from the Parekh and Zaccolo groups reveals that a prototypical anchoring protein, known to be responsible for regulating several important physiological processes, also orchestrates the formation of two important universal second messengers.