Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Researchers in the Department of Physiology, Anatomy and Genetics publish in the prestigious Molecular Cell an article entitled "Distinct Spatial Ca2+ Signatures Selectively Activate Different NFAT Transcription Factor Isoforms"

Many proteins have multiple isoforms that are often co-expressed in the same cell. Examples include ion channels, metabolic enzymes, kinases and transcription factors that regulate gene expression. Isoforms can arise from different genes or through alternative splicing of the same gene. Protein isoforms are ubiquitous in nature. The fact that green algae, yeast, Caenorhabditis elegans and vertebrates all express several protein isoforms reinforces the view that this tight evolutionary conservation underlies important, isoform-specific biological function.

A critical question in cell biology is therefore how some isoforms can be activated and not others when several are co-expressed within the same cell. A partial answer has been provided by the finding that isoforms of protein kinases are corralled to different sub-cellular locations, controlling only those substrates constrained within the immediate vicinity. However, many protein isoforms share the same spatial domain and are activated by the same intracellular messenger. How can one isoform now be activated selectively and how might it gain access to targets that other isoforms are excluded from? This issue is nicely encapsulated by the NFAT family of transcription factors, which are essential for vertebrate development, differentiation and function. NFAT proteins share the same spatial and temporal domain and are activated by the same intracellular signal, a rise in cytoplasmic Ca2+. How can different NFAT proteins be selectively activated?

Professor Anant Parekh’s group in DPAG have directly addressed this question, comparing the closely related NFAT1 and NFAT4 isoforms. Their new findings, published in this month’s Molecular Cell (58, 232-243), demonstrate that NFAT1 has a private line of communication with plasma membrane calcium channels, activating in response to Ca2+ microdomains near the open channels. By contrast NFAT4 is more of a co-incidence detector, requiring both local Ca2+ entry through the same channels as well as a rise in nuclear Ca2+. These different Ca2+-dependencies enable agonist to recruit different isoform combinations as stimulus strength increases. The results identify a new mechanism that enables selective activation of closely related proteins within the same cell. “This is a novel mechanism that enables a physiological trigger to recruit different transcription factors in a manner determined by stimulus intensity”, said Dr Kar. Professor Parekh added: “Differential recruitment of subtly distinct signaling molecules increases the temporal bandwidth for information processing in a biological system”. Professor Gill and colleagues from Pennsylvania, USA, have written a commentary in Molecular Cell (58, 197-199) that accompanies the article.

More information on the Molecular Cell website

Similar stories

Key cause of type 2 diabetes uncovered

Research led by Dr Elizabeth Haythorne and Professor Frances Ashcroft reveals high blood glucose reprograms the metabolism of pancreatic beta-cells in diabetes. They have discovered that glucose metabolites, rather than glucose itself, are key to the progression of type 2 diabetes. Glucose metabolites damage pancreatic beta-cell function, so they are unable to release enough of the hormone insulin. Reducing the rate at which glucose is metabolised, and these glucose metabolites build up, can prevent the effects of hyperglycaemia.

New study shows clinical symptoms for Alzheimer’s can be predicted in preclinical models

Establishing preclinical models of Alzheimer’s that reflect in-life clinical symptoms of each individual is a critically important goal, yet so far it has not been fully realised. A new collaborative study from the University of Oxford has demonstrated that clinical vulnerability to an abnormally abundant protein in Alzheimer’s brain is in fact reflected in individual patient induced pluripotent stem cell-derived cortical neurons.

Updating the circuit maps of the sympathetic neural network

A new review from Professor Ana Domingos’ lab and colleagues offers a fresh modern viewpoint on sympathetic neurons and their relation to immune cells and obesity.

New Pfizer grant paves the way to a better understanding of how body fat is controlled

Professor Ana Domingos has been awarded a highly competitive independent research grant from Pfizer to discover ‘the role of Sympathetic-associated Perineurial barrier Cells in obesity’.

Collaborative MRC grant paves the way to new therapeutic targets for stress and anxiety disorders

Dr Armin Lak, Associate Professor Ed Mann and Professor Zoltán Molnár have been awarded a £733K Project Grant from the Medical Research Council on “Orexinergic projections to neocortex: potential role in arousal, stress and anxiety-related disorders”.