Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

A collaborative King Group study published today in Nature Communications enhances our understanding of how our brains learn to adapt to abnormal sensory changes such as hearing loss. Their results could inform the future development of devices that restore hearing or other sensory impairments.

The brain has a remarkable capacity to adapt to changes in sensory inputs and to learn from experience. However, the neural circuits responsible for this flexible processing remain poorly understood. A new study from the King Group in collaboration with Associate Professor Ed Mann and Associate Professor Ed Boyden from MIT identifies the key part of the brain that drives auditory perceptual learning and enables us to adapt to hearing loss.

In essence, their study shows that the auditory cortex plays a critical role in learning to adapt to the abnormal auditory spatial cues that result from hearing loss in one ear. Training leaves a memory trace, which facilitates adaptation to a second period of hearing loss. However, evidence suggests that after the initial learning, the recovery in sound localisation accuracy is independent of cortical activity. "This type of rapid plasticity is likely to be extremely important when people experience hearing loss or other sensory impairments, and particularly when their hearing is partially restored via a hearing aid or cochlear implant." (Professor Andrew King).

The methodology behind these conclusions is particularly innovative. The team, which includes Associate Professor Victoria Bajo Lorenzana and Dr Fernando Nodal, used optogenetic tools to silence the activity of the auditory cortex. They silenced the auditory cortex in ferrets with a laser green light at the same time as the animals heard a sound. The light activated an proton pump called ArchT in the neural membrane that has been expressed after viral transfection of the ArchT gene. As a consequence, when the light is on, the neurons in the auditory cortex were shown to be hyperpolarized and therefore silenced.

Crucially, the results demonstrate the essential role of primary sensory cortices in perceptual learning, and could inform how hearing aids or cochlear implants are developed in future. Furthermore, according to first author Prof Bajo Lorenzana, the significance of these results does not only relate to hearing loss:

 

The wider significance is not only related to the auditory field, but potentially to other senses such as vision or touch. There are implications for the design and generation of new prosthesis that can change the activity of the cerebral cortex and therefore promote sensory learning. - A/Prof Bajo Lorenzana

The full publication "Silencing cortical activity during sound-localization training impairs auditory perceptual learning" is available to read in Nature Communications.

Similar stories

The brain’s one-sided teaching signals

A new study by the Lak group reveals a novel facet of dopamine signalling during visual decision making.

Fellowship awarded to Huriye Atilgan to enhance our understanding of value-based decision-making

Congratulations are in order for Postdoctoral Research Scientist Dr Huriye Atilgan who has been awarded a prestigious Sir Henry Wellcome Postdoctoral Fellowship funded by the Wellcome Trust.

The future of stroke treatment

A team of international collaborators including DPAG's Dr Mootaz Salman has been researching a promising new therapeutic for the treatment of strokes and other brain injuries.

New review reveals proof of concept for an anti-obesity immunotherapy

The Domingos lab has published a new opinion piece in Science investigating the implications of a Memorial Sloan Kettering Cancer Center study that lays the foundations for a potential new anti-obesity treatment in the form of targeting adipose tissue-resident macrophages.

New pathway established for multisensory cortical communication

Integration of information across the senses is critical for perception. This activity is thought to arise primarily from connections made in the brain's sensory cortical areas. A new paper from the King Group uncovers evidence for the first time on the little understood role of subcortical circuits in shaping the multisensory properties of primary cortical neurons.