Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

OPDC researchers have developed a new genetic mouse model of Parkinson's to track the earliest changes that take place in the brain.

The knowledge gained from their groundbreaking study, published in the leading scientific journal PNAS, could pave the way for new treatments that can slow or stop Parkinson's in its tracks. This study is the first to show that the way the chemical messenger dopamine is stored and released is affected at the very start of the process – before Lewy bodies appear.

Read the press release: http://www.parkinsons.org.uk/news/3-october-2013/clues-about-early-stages-parkinsons-new-mouse-model

Similar stories

New research to radically alter our understanding of synaptic development

Publication Research

A new study from the Molnár group on the role of regulated synaptic vesicular release in specialised synapse formation has made it to the cover of Cerebral Cortex.

Being "in the zone": how waking activity controls sleep need

Publication Research Vyazovskiy Group News

A new study from the Vyazovskiy group suggests that how and where we spend our time while awake impacts how much we need to sleep - it does not only depend on how long we are awake.

New target identified to develop treatment for Abdominal Aortic Aneurysm

Cardiac Theme Publication Research

A new study from the Smart group has shed light on a key regulatory step in the initiation and progression of Abdominal Aortic Aneurysm by revealing the protective role of a previously little known small protein.

Drug trial that could improve respiratory recovery from COVID-19 now underway

Research

A clinical trial has commenced this week to test whether a drug called almitrine can help people who are seriously ill with COVID-19 to recover from the disease.

Same genome, different worlds: How a similar brain causes sexually dimorphic behaviours

CNCB Goodwin Group News Publication Research

A new paper from the Goodwin group based in DPAG's Centre for Neural Circuits and Behaviour has shown how males and females are programmed differently in terms of sex.