Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

New research from the Swietach Group in collaboration with NHS Blood and Transplant has demonstrated that the process of storing blood in blood banks can negatively impact the function of red blood cells and consequently may reduce the effectiveness of blood transfusions, a treatment commonly used to combat anaemia.

Carrying oxygen from our lungs and releasing it to the rest of our body tissues is the primary and most vitally important function of red blood cells. With over 2 billion cases globally, anaemia is the single most prevalent impairment to human health. The biological process that is most profoundly affected in many types of anaemia is oxygen delivery. To correct this, a very common hospital intervention is a transfusion of red blood cells. According to the European Medicines Authority, 35 units of blood are transfused annually per 1,000 inhabitants in the EU (2016), using donations from 2.3% of the population. To support this demand for blood, elaborate storage facilities and logistics have been implemented in healthcare systems, such as the NHS Blood and Transplant.

DPAG scientists from the Swietach Group, working in collaboration with NHS Blood and Transplant, have shown how the process of storing blood for transfusion can have a detrimental effect on oxygen handling by red blood cells. It has been acknowledged that storage affects the biochemistry of red cells, but the impact of this on gas handling has not so far been investigated. This new study is the first demonstration that blood storage can profoundly reduce the rate of oxygen release from red cells, and potentially compromise the effectiveness of blood transfusions. Critically, the effect of storage on gas handling was found to vary substantially between blood units from different donors, and only weakly correlated to storage duration, which is currently the primary index used for quality-control in blood banks. The study also showed how rejuvenation with specially designed chemical additives can fully restore gas exchange kinetics. 

According to lead author Professor Pawel Swietach, a case has been made for blood banks to implement methods for measuring gas exchange kinetics as part of quality-control and for clinical trials assessing transfusion efficacy to consider kinetics: “Transfusing red cells that are unable to release oxygen within a few seconds is clearly problematic for patients who need an immediate improvement to their oxygenation status.  However, the system currently in place takes no account of the physiological quality of stored blood.  Technology developed at DPAG can be implemented to assign precious blood units with a proxy for physiological quality.  This would streamline resources; for example, by prioritising highest quality units for those patients who are in danger of irreversible tissue damage due to hypoxia. It will also define the expiry date of specific units in storage.  Finally, our work on rejuvenation also shows how blood units can be rescued by a simple treatment at the end of storage.” 

The team will continue working with the NHS and other blood bank systems to implement the technology in screening, and develop better guidelines for optimal use of blood units held for transfusion.

The full study, “Stored blood has compromised oxygen unloading kinetics that can be normalized with rejuvenation and predicted from corpuscular side-scatter” is available to read in Haematologica.

Similar stories

Key cause of type 2 diabetes uncovered

Research led by Dr Elizabeth Haythorne and Professor Frances Ashcroft reveals high blood glucose reprograms the metabolism of pancreatic beta-cells in diabetes. They have discovered that glucose metabolites, rather than glucose itself, are key to the progression of type 2 diabetes. Glucose metabolites damage pancreatic beta-cell function, so they are unable to release enough of the hormone insulin. Reducing the rate at which glucose is metabolised, and these glucose metabolites build up, can prevent the effects of hyperglycaemia.

New study shows clinical symptoms for Alzheimer’s can be predicted in preclinical models

Establishing preclinical models of Alzheimer’s that reflect in-life clinical symptoms of each individual is a critically important goal, yet so far it has not been fully realised. A new collaborative study from the University of Oxford has demonstrated that clinical vulnerability to an abnormally abundant protein in Alzheimer’s brain is in fact reflected in individual patient induced pluripotent stem cell-derived cortical neurons.

Updating the circuit maps of the sympathetic neural network

A new review from Professor Ana Domingos’ lab and colleagues offers a fresh modern viewpoint on sympathetic neurons and their relation to immune cells and obesity.

New Pfizer grant paves the way to a better understanding of how body fat is controlled

Professor Ana Domingos has been awarded a highly competitive independent research grant from Pfizer to discover ‘the role of Sympathetic-associated Perineurial barrier Cells in obesity’.

Collaborative MRC grant paves the way to new therapeutic targets for stress and anxiety disorders

Dr Armin Lak, Associate Professor Ed Mann and Professor Zoltán Molnár have been awarded a £733K Project Grant from the Medical Research Council on “Orexinergic projections to neocortex: potential role in arousal, stress and anxiety-related disorders”.