Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A new study from the Vyazovskiy group suggests that how and where we spend our time while awake impacts how much we need to sleep - it does not only depend on how long we are awake.

A single mouse running on a wheel

The prevailing notion is that our sleep habits are hard-wired in some way, or genetically determined, and that all animals, including humans, have to perform a certain, non-negotiable amount of sleep every day. To this end, major research efforts in the last few decades have been focused on investigating the underlying biology of "sleep need", targeting a broad range of molecules, physiological processes or brain areas. However, according to DPAG’s lead sleep researcher Associate Professor Vladyslav Vyazovskiy: “What we tend to forget is that wakefulness and sleep are defined, by and large, by the interaction of the organism with its environment. Consistently, evidence accumulates that "sleep need" can vary greatly depending on external conditions or other homeostatic drives, in addition to the genetic makeup.”

A new study from the Vyazovskiy lab supports this view. The study, led by DPhil student Linus Milinski, addresses whether changes in an animal's environment would affect its wake behaviours, and whether this, in turn, would affect its subsequent sleep. The team’s main experiment trained mice on a simple ‘nose poke’ task, using a touchscreen operant chamber. Unexpectedly, the animals sometimes performed the task, voluntarily, for many hours in a row, even during the day, which is a habitual sleep time in laboratory mice. Professor Vyazovskiy said: “We therefore hypothesised that certain wake behaviours may slow down the accumulation of ‘tiredness’ during continuous waking, resulting in a reduced sleep need.” Consistent with this hypothesis, the researchers found that during subsequent sleep, EEG slow waves, an established marker of homeostatic sleep need, were markedly lower after wake dominated by a simple task performance, when compared to wake spent in an enriched environment.

While further research is required to further our understanding of how sleep is affected by wake activities, the study concludes that wake ‘quality’ is important for subsequent sleep, and that the effect of environmental factors and motivation are key factors to consider in sleep studies. According to Professor Vyazovskiy: “Arguably, the time spent awake and specific wake activities are determined, to a large extent, by environmental contingencies, both predictable and unpredictable. Therefore, changes in sleep habits, produced by our experimental manipulations, can arise primarily from an altered relationship between the organism and the environment. In this respect, our study makes a strong case that studying sleep in an ecological context can provide new insights, beyond those obtained in standard laboratory conditions.”

The full paper “Waking experience modulates sleep need in mice”, in collaboration with Professor David Bannerman from the Department of Experimental Psychology, is available to read in BMC Biology.

Similar stories

New evidence for how our brains handle surprise

A new study from the Bruno Group is challenging our perceptions of how the different regions of the cerebral cortex function. A group of ‘quiet’ cells in the somatosensory cortex that rarely respond to touch have been found to react mainly to surprising circumstances. The results suggest their function is not necessarily driven by touch, but may indicate an important and previously unidentified role across all the major cortices.

Professor Dame Sue Black to deliver 2022 Christmas Lectures

In the 2022 Christmas Lectures from the Royal Institution, DPAG's Visiting Professor of Forensic Anatomy Dame Sue Black will share secrets of forensic science.

Researchers describe how cancer cells can defend themselves from the consequences of certain genetic defects

Swietach Group scientists have identified a rescue mechanism that allows cancers to overcome the consequences of inactivating mutations in critically important genes.

Randy Bruno and Scott Waddell receive Wellcome Discovery Awards

Congratulations are in order for Professors Randy Bruno and Scott Waddell who have each been awarded a prestigious Wellcome Trust Discovery Award to significantly enhance our understanding of higher cognitive functions.

Researchers discover novel form of adaptation in the auditory system

DPAG’s auditory neuroscience researchers have found that the auditory system adapts to the changing acoustics of reverberant environments by temporally shifting the inhibitory tuning of cortical neurons to remove reverberation.