Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

Hundreds of dietary supplements have been reported to improve cognitive and emotional function in humans, but few have scientific foundation. A new study from the Waddell group provides fresh insight into how dietary Magnesium supplementation can influence memory performance.

Prior research has shown that supplementing the diet of young and aging rodents with Magnesium improves their memory and it even appears to partially restore memory deficits in animals harbouring models of Alzheimer’s disease. Magnesium may therefore have therapeutic potential for humans with memory issues.

Yanying Wu, a postdoctoral fellow in the Waddell group, first showed that Magnesium feeding also improved memory of fruit flies (Drosophila). According to Professor Scott Waddell: “We reasoned that if Magnesium enhanced fly memory, this would indicate that it is a general feature of memory systems, and would allow us to analyse the underlying biology." Importantly, the memory-enhancing effects of Magnesium appear to involve a different mechanism to that previously proposed in rodents. The Waddell group found that a conserved Magnesium transporter (known as a Cyclin M2 or CNNM protein) was essential for normal and Magnesium-enhanced memory. Magnesium feeding increased the levels of Magnesium in memory-relevant neurons and the CNNM transporter is critical to regulate these elevated levels. 

Fluorescent close up of the fly brain showing that a key magnesium transporter dominates the neurons involved in memory.

The fly CNNM protein (green, shown to cover the entire area) is abundant in memory-relevant neurons in the fly brain

Humans have four CNNM genes and some are expressed in the brain, where they have been associated with defective neural development, seizures and intellectual disability. However, their roles in the mature brain are currently underappreciated. Professor Scott Waddell said: “Our work suggests that some of the CNNM genes are likely to also provide crucial memory-related function in the fully developed brain. Given prior work with Magnesium supplementation in mammals, CNNM proteins might provide another avenue to manipulate Magnesium levels in a way that benefits memory in human patients.” 

The full paper “Magnesium efflux from Drosophila Kenyon Cells is critical for normal and diet-enhanced long-term memory”, first authored by Dr Yanying Wu, is available to read in eLife.

Similar stories

The brain’s one-sided teaching signals

A new study by the Lak group reveals a novel facet of dopamine signalling during visual decision making.

Fellowship awarded to Huriye Atilgan to enhance our understanding of value-based decision-making

Congratulations are in order for Postdoctoral Research Scientist Dr Huriye Atilgan who has been awarded a prestigious Sir Henry Wellcome Postdoctoral Fellowship funded by the Wellcome Trust.

The future of stroke treatment

A team of international collaborators including DPAG's Dr Mootaz Salman has been researching a promising new therapeutic for the treatment of strokes and other brain injuries.

New review reveals proof of concept for an anti-obesity immunotherapy

The Domingos lab has published a new opinion piece in Science investigating the implications of a Memorial Sloan Kettering Cancer Center study that lays the foundations for a potential new anti-obesity treatment in the form of targeting adipose tissue-resident macrophages.

New pathway established for multisensory cortical communication

Integration of information across the senses is critical for perception. This activity is thought to arise primarily from connections made in the brain's sensory cortical areas. A new paper from the King Group uncovers evidence for the first time on the little understood role of subcortical circuits in shaping the multisensory properties of primary cortical neurons.