Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

As part of its commitment to developing better medicines for Duchenne Muscular Dystrophy (DMD), WAVE has extended its ongoing research collaboration with the University of Oxford to advance stereopure nucleic acid therapies for DMD across exons.

microRNA array identifying extracellular microRNAs elevated in mdx mouse serum and normalised following peptide-conjugated oligonucleotide therapy

 microRNA array identifying extracellular microRNAs elevated in mdx mouse serum and normalised following peptide-conjugated oligonucleotide therapy

Through the collaboration, renowned researcher Matthew Wood and his team will continue to work with WAVE to use the company’s proprietary platform to enhance oligonucleotide approaches, including exon-skipping, to address the rare genetic muscle disease.
 
“The data we have seen to date using WAVE’s novel approach to exon-skipping in DMD is very promising. I believe that academia and industry, working together, may be on the verge of a veritable medical revolution where we can potentially effectively and durably treat genetically based diseases such as DMD,” said Professor Wood.

“Collaborations between academia and industry are critical now more than ever in order to collectively harness the latest scientific advancements to rapidly progress therapies for patients. We look forward to expanding our collaboration with the WAVE team and advancing the potential and benefits of stereopure oligonucleotide approaches for DMD.”

Read more

Similar stories

New research to radically alter our understanding of synaptic development

Publication Research

A new study from the Molnár group on the role of regulated synaptic vesicular release in specialised synapse formation has made it to the cover of Cerebral Cortex.

Being "in the zone": how waking activity controls sleep need

Publication Research Vyazovskiy Group News

A new study from the Vyazovskiy group suggests that how and where we spend our time while awake impacts how much we need to sleep - it does not only depend on how long we are awake.

New target identified to develop treatment for Abdominal Aortic Aneurysm

Cardiac Theme Publication Research

A new study from the Smart group has shed light on a key regulatory step in the initiation and progression of Abdominal Aortic Aneurysm by revealing the protective role of a previously little known small protein.

Drug trial that could improve respiratory recovery from COVID-19 now underway

Research

A clinical trial has commenced this week to test whether a drug called almitrine can help people who are seriously ill with COVID-19 to recover from the disease.

Same genome, different worlds: How a similar brain causes sexually dimorphic behaviours

CNCB Goodwin Group News Publication Research

A new paper from the Goodwin group based in DPAG's Centre for Neural Circuits and Behaviour has shown how males and females are programmed differently in terms of sex.