Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

As part of its commitment to developing better medicines for Duchenne Muscular Dystrophy (DMD), WAVE has extended its ongoing research collaboration with the University of Oxford to advance stereopure nucleic acid therapies for DMD across exons.

microRNA array identifying extracellular microRNAs elevated in mdx mouse serum and normalised following peptide-conjugated oligonucleotide therapy

 microRNA array identifying extracellular microRNAs elevated in mdx mouse serum and normalised following peptide-conjugated oligonucleotide therapy

Through the collaboration, renowned researcher Matthew Wood and his team will continue to work with WAVE to use the company’s proprietary platform to enhance oligonucleotide approaches, including exon-skipping, to address the rare genetic muscle disease.
 
“The data we have seen to date using WAVE’s novel approach to exon-skipping in DMD is very promising. I believe that academia and industry, working together, may be on the verge of a veritable medical revolution where we can potentially effectively and durably treat genetically based diseases such as DMD,” said Professor Wood.

“Collaborations between academia and industry are critical now more than ever in order to collectively harness the latest scientific advancements to rapidly progress therapies for patients. We look forward to expanding our collaboration with the WAVE team and advancing the potential and benefits of stereopure oligonucleotide approaches for DMD.”

Read more

Similar stories

Drug trial that could improve respiratory recovery from COVID-19 now underway

Research

A clinical trial has commenced this week to test whether a drug called almitrine can help people who are seriously ill with COVID-19 to recover from the disease.

Same genome, different worlds: How a similar brain causes sexually dimorphic behaviours

CNCB Goodwin Group News Publication Research

A new paper from the Goodwin group based in DPAG's Centre for Neural Circuits and Behaviour has shown how males and females are programmed differently in terms of sex.

New form of gift wrap drives male reproductive success

Publication Research Wilson Group News

The transfer of complex mixtures of signals and nutrients between individuals is a key step in several biologically important events in our lives, such as breastfeeding and sexual intercourse. However, we know relatively little about the ways in which the molecular gifts involved are packaged to ensure their successful delivery to the recipient.

Just over half of British Indians would take COVID vaccine

EDI News Outreach Postdoctoral Publication Research Riley Group News

University of Oxford researchers from the Department of Physiology, Anatomy and Genetics (DPAG) and the Department of Psychiatry, in collaboration with The 1928 Institute, have published a major new study on the impact of COVID-19 on the UK’s largest BME population.

Earliest origins of the forming heart identified

Cardiac Theme Postdoctoral Publication Research

The earliest known progenitor of the outermost layer of the heart has been characterised for the first time and linked to the development of other critical cell types in the developing heart in a new paper from the Srinivas group led by BHF Immediate Fellow Dr Richard Tyser.